MATH 6360
Applied Analysis
Fall 2018

First name: \qquad Last name: \qquad

Points:

Assignment 4, due Friday, September 21, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Use the implicit function theorem to show that the system of equations

$$
\begin{aligned}
3 x+y-z+u^{2} & =11 \\
x-y+2 z+u & =-2 \\
2 x+2 y-3 z+2 u & =15
\end{aligned}
$$

can be solved locally for (y, z, u) as function of x. Give the formulas for the derivatives $d y / d x$, $d z / d x$, and $d u / d x$. The point $\left(x_{0}, y_{0}, z_{0}, u_{0}\right)=(1,3,-1,2)$ solves the equations. Use the derivatives to give a linear approximation to the nearby point $(0.9, y, z, u)$ that satisfies the equations.

Problem 2

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be continuously differentiable. Assume at the point $\left(x_{0}, y_{0}, z_{0}\right)$ the partial derivatives satisfy $\partial f\left(x_{0}, y_{0}, z_{0}\right) / \partial x \neq 0, \partial f\left(x_{0}, y_{0}, z_{0}\right) / \partial y \neq 0$ and $\partial f\left(x_{0}, y_{0}, z_{0}\right) / \partial z \neq 0$. Explain that there are functions g_{i} with $x=g_{1}(y, z), y=g_{2}(x, z)$ and $z=g_{3}(x, y)$ that are defined in some open sets in \mathbb{R}^{2} and $f\left(g_{1}(y, z), y, z\right)=f\left(x, g_{2}(x, z), z\right)=f\left(x, y, g_{3}(x, y)\right)=f\left(x_{0}, y_{0}, z_{0}\right)$ and if (x, y, z) has coordinates in these open sets, then

$$
\frac{\partial g_{1}}{\partial y} \frac{\partial g_{2}}{\partial z} \frac{\partial g_{3}}{\partial x}=-1
$$

Verify this identity for the partial derivatives for the example of a van der Waals gas with $f(p, V, T)=$ $p V-R T=f\left(p_{0}, V_{0}, T_{0}\right)$, where $p_{0}, V_{0}, V_{0}>0$ and $R>0$ is a constant.

Problem 3

Let y be implicitly given as a function of x by $f(x, y)=e^{y}+y^{3}+x^{3}+x^{2}=1$. Explain why this equation defines $y=g(x)$ globally on \mathbb{R}. Find the values of x for which $g^{\prime}(x)=0$. Verify that if $g^{\prime}(x)=0$, then

$$
g^{\prime \prime}(x)=-\frac{1}{\partial f(x, y) / \partial y} \frac{\partial^{2} f(x, y)}{\partial x^{2}}
$$

Use this to decide for which x the function g has a local maximum/minimum.

Problem 4

Let A be a symmetric, real $n \times n$ matrix, so $A_{i, j}=A_{j, i}$ for $i, j \in\{1,2, \ldots, n\}$. Consider the corresponding quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\sum_{i, j=1}^{n} A_{i, j} x_{i}, x_{j}$. Show that on the sphere $\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ in \mathbb{R}^{n}, f assumes its maximum at a point x for which $A x=\lambda x$ with some $\lambda \in \mathbb{R}$.

