MATH 6360 Applied Analysis Fall 2018

First name:	_ Last name:	Points:
First name:	_ Last name:	Points:

Assignment 6, due Friday, October 19, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let C([-1,1]) be equipped with the norm $||f||_1 = \int_{-1}^1 |f(x)| dx$. Does the linear functional $F: f \mapsto f(0)$ extend uniquely to $L^1([-1,1])$?

Problem 2

Show that if X and Y are normed spaces, and B(X, Y) is a Banach space, then Y is a Banach space. Hint: If $F \in X^*$ is not the zero functional, consider $T: Y \to B(X, Y)$ given by T(y)x = F(x)y.

Problem 3

Let c_0 be the normed vector space containing each sequence $x = (x_n)_{n \in \mathbb{N}}$ with $\lim_n x_n = 0$, equipped with the norm $||x||_{\infty} = \sup_n |x_n|$ for $x \in c_0$. Show that the dual space c_0^* is isometrically isomorphic to ℓ^1 , the space of summable sequences, equipped with $||y||_1 = \sum_{n=1}^{\infty} |y_n|$ for $y \in \ell^1$.

Problem 4

Let $\operatorname{Pol}([0,1])$ be the space of real polynomials on [0,1], equipped with $||p||_1 = \int_0^1 |p(x)| dx$. Define for $p \in \operatorname{Pol}([0,1])$ the map $T(p)q = \int_0^1 p(x)q(x)dx$, then show T(p) is continuous, so $T : \operatorname{Pol}([0,1]) \to \operatorname{Pol}([0,1])^*$. Moreover, show that if $A = \{p \in \operatorname{Pol}([0,1]) : ||p||_1 \leq 1\}$, then for each $q \in \operatorname{Pol}([0,1])$, $\sup_{p \in A} |T(p)q|$ is finite, but T is not uniformly bounded. Why does this not contradict the Banach-Steinhaus theorem?