MATH 6360 Applied Analysis Fall 2018

First name:	Last name:	Points:
		1 011105.

Assignment 8, due Friday, November 9, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Explain why C([0,1]), equipped with the metric d_p coming from the L^p -norm for $1 \le p \le \infty$ is separable. Hint: Use the result of a prior homework problem to take care of $p = \infty$.

Problem 2

Let X be a Banach space, Y a normed vector space and $T: X \to Y$ bounded, linear. Assume there is C > 0 such that for each $x \in X$, $||Tx|| \ge C||x||$. Show that the range T(X) forms a complete subspace of Y and that the map $T': X \to T(X), T'(x) = T(x)$ has a bounded inverse.

Problem 3

Let $X = c_{0,0}$, the space of sequences with finitely many non-zero elements, equipped with the norm from ℓ^{∞} . Let $T: X \to X$ be given by $(Tx)_k = x_k/k, k \in \mathbb{N}$. Show that T is a bijection, but that it does not have a bounded inverse.

Problem 4

Let X = C([0, 1]) be equipped with d_{∞} . We define $T : X \to X$ by $(Tf)(x) = \int_0^x f(t)dt$. Show that T is injective. Describe T(X). Does $T' : X \to T(X)$ have a bounded inverse?

Problem 5

Let $F: C([-1,1]) \to \mathbb{R}$ be given by $F(f) = \int_0^1 f(t)dt - \int_{-1}^0 f(t)dt$ where C([-1,1]) is equipped with d_{∞} . Let $Y = \ker F = \{f \in C([-1,1]), F(f) = 0\}$ and h(x) = x, then show that $\inf_{y \in Y} ||y - h|| = \frac{1}{2}$ but that there is no $z \in Y$ with $||z - h|| = \frac{1}{2}$. Hint: How does |F(f)|/||F|| relate to the distance between f and Y?