MATH 6360 Applied Analysis Fall 2018

First name: I	Last name:	Points:
---------------	------------	---------

Assignment 9, due Friday, November 30, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Explain why C([0,1]), equipped with the L^p -norm for $1 \le p < \infty$ and $p \ne 2$ cannot become an inner product space for which the norm is induced by the inner product.

Problem 2

Let *H* be a Hilbert space and *F* a bounded linear functional on *H*. Show that there exists a unique $z \in H$ such that $Fx = \langle x, z \rangle$ and ||F|| = ||z||. Hint: The kernel of *F* is a closed subspace. If $F \neq 0$, consider z' = x - Px where *P* is the projection onto the kernel of *F* and *x* satisfies $Fx \neq 0$.

Problem 3

Find

$$\min\left\{\int_{-1}^{1} |x^2 - a - bx|^2 dx : a, b \in \mathbb{R}\right\}.$$

Problem 4

Find the function $f \in C([-\pi, \pi])$, which satisfies

$$\int_{-\pi}^{\pi} f(x)xdx = 1 \text{ and } \int_{-\pi}^{\pi} f(x)\sin(x)dx = 2$$

and has minimal L^2 -norm. Show that this function is unique.