December, 2018

First name: \qquad Last name: \qquad Last 4 digits ID: \qquad

1 Memorization

a. State the contraction mapping theorem on metric spaces.
b. State a theorem on the existence and uniqueness of initial-value problems of first-order differential equations on an interval $[a, b]$.
c. State carefully the definition of the open mapping theorem for linear transformations T:X \rightarrow Y, with appropriate space X and Y.
d. State under which condition the norm on a normed real vector space is induced by an inner product.

Turn in this first part to obtain the next portion of the exam.

First name: \qquad Last name: \qquad Last 4 digits ID: \qquad
In the following problems, you may quote statements from class to simplify your answers. You do not need to give a proof of a statement if it was discussed in class.

2 Problem

Let $X=C([0, a])$, equipped with the metric induced by the norm $\|f\|_{\infty}=\sup _{0 \leq x \leq a}|f(x)|$.
a. Show that the averaging operator A defined by $\operatorname{Af}(0)=f(0)$ and

$$
\operatorname{Af}(x)=\frac{1}{x} \int_{0}^{x} f(x) d x, x>0
$$

is a bounded linear operator mapping X to itself with $\|A\| \leq 1$.
b. Does A have any fixed points? If so, find one. If not, explain why not.

3 Problem

Let $B=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$. Find the maximum value of $\|(x, y, z)\|_{p}=\left(|x|^{p}+|y|^{p}+\right.$ $\left.|z|^{p}\right)^{1 / p}$ for $1<p<2$ occuring among all points in B. Distinguish cases if necessary.

4 Problem

Let the set $A \subset \ell^{\infty}$ be given by

$$
A=\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{\infty}: 0<x_{n}<1, n \in \mathbb{N}\right\} .
$$

Decide whether this set is open in ℓ^{∞}, equipped with the metric induced by the sup-norm. Explain the reasons for your answer.

5 Problem

Is the sequence of functions $\left(f_{n}\right)_{n=1}^{\infty}$ in $C([0,1])$, equipped with the sup-norm, given by

$$
f_{n}(t)=\sqrt{n}\left(t^{n}-t^{n+1}\right)
$$

convergent in $C([0,1])$?

6 Problem

Let X be a uniformly convex normed linear space, $F \in X^{*}, F \not \equiv 0$. Consider the set $Y=\{y \in X$: $F(y)=1\}$. Prove that

$$
\|F\|=\frac{1}{\inf _{y \in Y}\|y\|}
$$

7 Problem

Let H be the Hilbert space ℓ^{2} and S the map defined by

$$
(S x)_{k}=x_{k} / k, k \in \mathbb{N}
$$

for any $x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{2}$. Show that S is a bounded map from ℓ^{2} to ℓ^{2}, and that it is one-to-one. Is the range of S a closed subspace of ℓ^{2} ? Explain your answer.

8 Problem (20 points)

Let X be the space $C^{1}([0,1])$ containing all continuously differentiable functions. Show that the two norms

$$
\|f\|_{C^{1}}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}
$$

and

$$
\|f\|_{0}=|f(0)|+\left\|f^{\prime}\right\|_{\infty}
$$

are equivalent.
[empty page]

