Practice Exam 2 – Math 6360 November, 2018

 First name:
 Last name:
 Last 4 SID:

1 Memorization

1. State a theorem on uniform boundedness of $(T_a)_{a \in A}$ where each $T_a : X \to Y$ with appropriate spaces X and Y.

2. State a best approximation property in $L^p([a, b])$.

In the following problems, you may quote statements from class to simplify your answers. You do not need to give a proof of a statement if it was discussed in class.

2 Problem

Let X and Y be Banach spaces and S a dense subset of X. Let $T': S \to Y$ be a bounded linear map, then show that there is a unique bounded, linear map $T: X \to Y$ such that T(x) = T'(x) for $x \in S$.

3 Problem

Recall that the space ℓ^p is usually equipped with the *p*-norm that assigns to $x = (x_k)_{k=1}^{\infty} \in \ell^p$ the norm $||x||_p = (\sum_k |x_k|^p)^{1/p}$. Consider $X = \ell^1$ as a vector space. From $\ell^1 \subset \ell^2$ we can also put the 2-norm on *X*. Is there a $C \ge 1$ such that for each $x \in X$, $||x||_2/C \le ||x||_1 \le C||x||_2$? Explain the reason for your answer. Hint: Is *X* a closed subspace of ℓ^2 ?

[empty page]