MATH 6361
Applied Analysis
Spring 2019

First name: \qquad Last name: \qquad

Points:

Assignment 1, due Friday, January 25, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Establish the identity

$$
\|z-x\|^{2}+\|z-y\|^{2}=\frac{1}{2}\|x-y\|^{2}+2\left\|z-\frac{1}{2}(x+y)\right\|^{2}
$$

for x, y, z in a real or complex inner product space.

Problem 2

Let P be a bounded linear map on a real or complex Hilbert space H. Show that if $P^{2}=P$ and for each $x, y \in H,\langle P x, y\rangle=\langle x, P y\rangle$, then the range of P is closed and P is the orthogonal projection onto its range. Hint: If $P x=0$ then $x \perp \operatorname{ran}(P)$.

Problem 3

Let K be a closed, convex set in a real Hilbert space H and $x_{0} \in H \backslash K$. Recall that there is a unique $y_{0} \in K$ such that $\left\|y_{0}-x_{0}\right\|=\inf _{y \in K}\left\|y-x_{0}\right\|$. Show that $z \in K$ satisfies $z=y_{0}$ if and only if for each $y \in K,\left\langle x_{0}-z, y\right\rangle \leq\left\langle x_{0}-z, z\right\rangle$. Hint: Consider for $t \in[0,1]$ the squared distance between x_{0} and $t y_{0}+(1-t) z$.

Problem 4

The complex exponentials $u_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}$, define an orthonormal basis for $L^{2}([-\pi, \pi])$, so for $f \in L^{2}([-\pi, \pi]),\|f\|_{2}^{2}=\sum_{n=-\infty}^{\infty}\left|\left\langle f, u_{n}\right\rangle\right|^{2}$. Evaluate both sides of this identity for (a) $f(x)=1$, if $x \geq 0$ and $f(x)=0$, if $x<0$ and (b) $f(x)=\pi-|x|$. Conclude a series summation formula for series of real numbers in both cases.

