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Please staple this problem sheet to your homework. When asked to prove something, make a careful
step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1
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Problem 2

Prove that if ↵

2⇡ is irrational, then for any 2⇡-periodic continuous function f on R,
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Hint: First show this for the special case f(x) = eimx, m 2 Z.

Problem 3

Prove that a bounded sequence (x(n))1
n=1 in `2 is weakly convergent to x 2 `2 if and only if for each

k 2 N, the sequence of k-th entries (x
(n)
k

)1
n=1 converges to x

k

. Hint: Use that any bounded sequence
has a subsequence that is weakly convergent.

Problem 4

Let A be a closed, bounded and convex set in a Hilbert space H and f : H ! R continuous, convex
and bounded below on A, so inf

x2A f(x) 2 R. Show that f assumes its minimum on A.


