MATH 6361
Applied Analysis
Spring 2019

First name: \qquad Last name: \qquad

Points:

Assignment 3, due Friday, February 8, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that that the polynomials $p_{0}(x)=1 / \sqrt{2}$ and for $n \in \mathbb{N}$

$$
p_{n}(x)=\frac{1}{2^{n+1 / 2}} \frac{\sqrt{2 n+1}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

are what one would obtain from applying the Gram-Schmidt orthonormalization procedure to $1, x, x^{2}, \ldots$ in $L^{2}([-1,1])$. Explain why this is enough to conclude that $\left\{p_{n}\right\}_{n=0}^{\infty}$ is an orthonormal basis of $L^{2}([-1,1])$. You may use without proof that

$$
\int_{-1}^{1}\left(x^{2}-1\right)^{n} d x=\frac{(-1)^{n}(n+1) 4^{n+1}(n!)^{2}}{(2(n+1))!}
$$

Problem 2

Prove that if $\frac{\alpha}{2 \pi}$ is irrational, then for any 2π-periodic continuous function f on \mathbb{R},

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f(k \alpha)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
$$

Hint: First show this for the special case $f(x)=e^{i m x}, m \in \mathbb{Z}$.

Problem 3

Prove that a bounded sequence $\left(x^{(n)}\right)_{n=1}^{\infty}$ in ℓ^{2} is weakly convergent to $x \in \ell^{2}$ if and only if for each $k \in \mathbb{N}$, the sequence of k-th entries $\left(x_{k}^{(n)}\right)_{n=1}^{\infty}$ converges to x_{k}. Hint: Use that any bounded sequence has a subsequence that is weakly convergent.

Problem 4

Let A be a closed, bounded and convex set in a Hilbert space H and $f: H \rightarrow \mathbb{R}$ continuous, convex and bounded below on A, so $\inf _{x \in A} f(x) \in \mathbb{R}$. Show that f assumes its minimum on A.

