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Assignment 4, due Friday, February 22, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful
step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that weak convergence of a sequence in the closed unit ball of a separable Hilbert space is
equivalent to convergence with respect to a metric
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j=1 is a suitable sequence of vectors.

Problem 2

Show that the linear map T : H ! H on a Hilbert space is bounded if and only if for each weakly
convergent sequence (x

n
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n=1 with weak limit x, (Tx
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n=1 is weakly convergent to Tx.

Problem 3

Show that for any bounded linear functional F on a real Hilbert space H, the function
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assumes its minimum at a unique vector x⇤ with G(x⇤) = inf
y2H G(y).

Problem 4

Let ✏ > 0 and
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define an operator on the Hilbert space C2, equipped with the standard inner product hx, yi =
x1y1+x2y2. Find the operator norm of T
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