MATH 6361
Applied Analysis
Spring 2019

First name: \qquad Last name: \qquad

Points:

Assignment 5, due Friday, March 8, 10am

Please staple this problem sheet to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Show that if A is a bounded, self-adjoint linear operator on a complex Hilbert space H and I the identity operator, then $T_{\alpha}=I+i \alpha A$ with $\alpha \in \mathbb{R}$ has a bounded inverse with norm $\left\|T_{\alpha}^{-1}\right\| \leq 1$.

Problem 2

Recall the real Sobolev space

$$
H_{0}^{2}([-1,1])=\left\{f \in C([-1,1]): f(x)=\int_{[-1, x]} g d t \text { for } x \in[-1,1], g \in L^{2}([-1,1]), f(1)=0\right\}
$$

equipped with the norm

$$
\|f\|_{H_{0}^{2}}=\left(\int_{[-1,1]}|f|^{2} d t+\int_{[-1,1]}\left|f^{\prime}\right|^{2} d t\right)^{1 / 2}
$$

Show that the linear functional $F: H_{0}^{2}([-1,1]) \rightarrow \mathbb{R}$ defined by

$$
F(f)=f(0)
$$

is bounded.

Problem 3

The numerical range of an operator T is the set $\rho(T)=\{\langle T x, x\rangle,\|x\|=1\}$. If T is bounded, linear and self-adjoint and $\rho_{1}=\langle T x, x\rangle<\rho_{2}=\langle T y, y\rangle$ with $\|x\|=\|y\|=1$, then show $\left[\rho_{1}, \rho_{2}\right] \subset \rho(T)$. Hint: Consider the values of the quadratic form associated with T restricted to $(1-t) x+t y$, $t \in[0,1]$.

Problem 4

Let T be the operator on ℓ^{2} defined by $(T x)_{k}=x_{k} / k$. Show that if $\left(x^{(n)}\right)_{n=1}^{\infty}$ is a sequence in ℓ^{2} that converges weakly to 0 , then $T x^{(n)} \rightarrow 0$ in norm. Hint: Quote known results about such a sequence $\left(x^{(n)}\right)_{n=1}^{\infty}$ in ℓ^{2}.

