Information Theory with Applications

MATH 6397 - Fall 2014
September 4, 2014

Homework Set 1, due Tuesday, Sep 16, 2014

1. Additivity of entropy. Let X, Y, Z be three binary random variables. Assume the random vector (X, Y, Z) has equal probability $1 / 4$ for each outcome $(0,0,0),(0,1,0),(1,0,0)$ and $(1,0,1)$.
(a) Write down six ways of splitting $H(X, Y, Z)$ into three terms involving conditional entropy.
(b) Compute $H(X), H(Y \mid X)$ and $H(Z \mid X, Y)$.
(c) Conclude the value of $H(X, Y, Z)$ and verify this result by a direct way of computing $H(X, Y, Z)$.
2. Conditional entropy as distance? Given three random variables X, Y, Z which map to an at most countable alphabet, and the usual definition of conditional entropy, show the triangle-type inequality

$$
H(X \mid Z) \leq H(X \mid Y)+H(Y \mid Z) .
$$

3. Entropy and counting. Let $\alpha \leq 1 / 2$, and let $h(\alpha)$ be the binary entropy (the entropy of a binary random variable with success probability α). Show that for each $n \in \mathbb{N}$, if $I=\{i \in \mathbb{Z}: 0 \leq i \leq \alpha n\}$, then

$$
\sum_{i \in I}\binom{n}{i} \leq e^{n h(\alpha)} .
$$

Hints: Recall that $\binom{n}{i}$ counts the number of binary sequences of length n with i ones. Consider a sequence of n random variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ which produce each binary sequence with at most $n \alpha$ ones with equal probability. Use additivity and entropy inequalities to deduce the claimed upper bound.

