Information Theory with Applications

MATH 6397 – Fall 2014

Homework Set 3, due Tuesday, Nov 11, 2014

- 1. Optimal quantization. Let X be a random variable which is normally distributed with mean zero and variance σ^2 . Which map $\phi : \mathbb{R} \to \{a, b\}$ and choice of the two numbers a < b minimizes the mean-square error $\mathbb{E}[(X \phi(X))^2]$?
- 2. Entropy maximizers. Prove that among all non-negative random variables with a given mean $\mu > 0$, the exponential distribution has maximal differential entropy.
- 3. Rate distortion theory for binary random variables.
 - (a) Let X be a random variable with values in $\mathbb{A} = \{0, 1\}$ and $\mathbb{P}(X = 0) = p < 1/2$. Assume $0 \le \epsilon \le p$. Show that for any random variable Y with the same alphabet and $\mathbb{P}(X \ne Y) \le \epsilon$, we have

$$I(X;Y) \ge h(p) - h(\epsilon)$$

where h is the binary entropy.

(b) Let X be as before, and assume $0 \le \epsilon \le p < 1/2$. Define a random variable Y such that it has the marginal distribution satisfying

$$\mathbb{P}(Y=0) = \frac{1-p-\epsilon}{1-2\epsilon},$$

and conditioning on the outcome of Y gives $\mathbb{P}(X = 0 | Y = 0) = 1 - \epsilon$, $\mathbb{P}(X = 0 | Y = 1) = \epsilon$. Prove that

$$I(X;Y) = h(p) - h(\epsilon).$$

(c) Given a discrete memoryless source $\{X_j\}_{j=1}^{\infty}$ with alphabet $\mathbb{A} = \{0, 1\}$ and $\mathbb{P}(X_1 = 0) = p < 1/2$, use the preceding parts to show

that for the additive Hamming distortion $(d_n \text{ counts the number})$ of errors for binary input/output sequences of length n,

$$R(D) = \begin{cases} h(p) - h(D), & \text{if } 0 \le D p \end{cases}.$$