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1.1.3 Conditional Entropy

1.1.5 Definition. The conditional entropy of Y given X is obtained by averaging H(Y'|a) over
all @ € A, with respect to the probabilities Px (a):

H(Y|X)=> Px(a)H(Y]a)

a€h
=> Px(a ( > W(bla) InW(bla ))
acA beB
HY|X)=- > Pxy(a,b) mW(bla)
a€AbeB

A few properties of conditional entropy are listed below:

e H(Y|X) = 0 implies that either Pxy(a,b) = 0 or InW(bla) = 0. So, if Pxy(a,b) # 0
then W(bja) = 1. Thus there is a map f : A — B such that Y = f(X) with probability
one. So, Y almost surely depends on X in a deterministic fashion.

e H(Y|X) < H(Y) This property implies that knowing X decreases the entropy of Y. We
would like to show this property and we prepare this with lemma below.

Before we begin a reminder of two properties:

Independence: If we have X, Y with alphabets A, B and joint probability measure Px y then X
and Y are independent if and only if Pxy(a,b) = P@a)Py (b) for all (a,b) € (A x B)

Convexity of x + wInz: From basics of calculus we know that a function f(z) € C*(R) is
convex if its second derivative is non-negative. For f(z) = zlnx, this implies f'(z) =1+ Inz
and f"(x) = 1 >0, for all 2 > 0 hence the function is convex in z > 0.

1.1.6 Lemma (Log-Sum Inequality). For any non-negative ay,as,...,a, and strictly positive

bi,b9,...,b, we have
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and equality holds if and only if for all 1 < j < n, 3 = =
J

Proof. Assume a; > 0, >°7_ a]
Z? Va5 f(ag) > f (Z] . ]xj> and equality holds if and only if z’s are constant for each j

= 1 and f is strictly convex, then, Jensen's inequality gives

where aj > 0.
The log-sum inequality follows from choosing a; = % r; = Z—j and f(z) = zInz,
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Hence we get the asserted inequality. O]

because then

We use this lemma to show that knowing X helps reduce uncertainity about Y.

1.1.7 Proposition. Given two discrete random variables X : Q@ — A and Y : Q — B, then
H(X|Y) < H(Y) and equality holds if and only if X and Y are indpendent.

Proof. Using the definition of entropy and conditional entropy:
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Because the probabilities Px y (a,b) are non-negative, equality holds if and only if P)E‘;—(“lz)b) =1
when Px y(a,b) # 0. This means Py y (a,b) = Px(a)Py(b) for such (a,b). Using the fact that
the probabilities of all the outcomes have to sum to one, we see that this inequality holds for all

(a,b) € A x B, which means that the random variables are independent. ]

1.1.8 Question. We have the inequality for the conditional entropy H(Y|X) <
about the entropy of the conditional probability measure of Y given that X

- ZbeIB W(bla) In W(bla)?

H(Y), but what
= a, H(Yl]a) =



In general we cannot compare H(Y') and H(Y |a). For example, consider the pair of binary
random variables X Y.

Pyy | Y=0]Y=1
X=0| 08| 0
X=1] 01 | 01

We compute:

H(Y)=-0.91n0.9 — 0.1In0.1 ~ 0.33
H(Y|X =1) = —1n0.5 ~ 0.69
H(Y|X)=02x (—In0.5) + 0.8 x 0~ 0.14

We see that knowing the value X = 1 occurred does not necessarily decrease the entropy
resulting for the distribution of Y.

1.2 Additivity of Entropy
1.2.9 Proposition. Let X : 2 — A, Y : Q — B as above, then

H(X,Y)=H(X)+ H(Y|X)

Proof. Using the definition of entropy of joint distributions:

H(X,Y) Z Pxy(a,b)InPxy(a,b)
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1.2.10 Corollary. Let {X;}7_, be random variables with discrete alphabets, then

The proof of the corollary is done by induction over the number of random variables.



1.3 Concavity of Entropy

1.3.11 Proposition. Given discrete random variables X,Y then

i H(Px) is concave in Px.

i H(Pxy) is concave in the probability measure of X, that is, for A € [0, 1]

HAPx,y + (1 =ANPx,y) > AH(Px,y) + (1 = NH(Px,y).

i H(Y|X) is concave with respect to W(b|a).

Proof. .

i It suffices to show that for A € [0,1] and the random Variables X;, X, with probability

measures Py, and Px,, that H(APx, + (1 — A\)Px, > AH(Px,) + (1 — \)H(Px,)
With Jensen's inequality and since z In z is strictly convex we have:

)‘]P)Xl lnIle + (1 — )\)IP)X2 ID]P)XQ S ()\]P))(l + (1 — )\)]P)X2) hl()\]P)Xl + (1 — )\)]P)Xz)

Multiplying the above by -1 and substituting the definition of entropy, we get the required
inequality.

This is similar to above and can be obtained by replacing Px, by Px, y and Px, by Px, y.

Again, here we use the definition of conditional entropy:

H(YIX) = Y Px(a) 3 (~W(bla) W (o))

acA beb
and use the same program for the sum over the outcomes b € B as in i to show the concavity.
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