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1.1.3 Conditional Entropy

1.1.5 Definition. The conditional entropy of Y given X is obtained by averaging H(Y |a) over
all a ∈ A, with respect to the probabilities PX(a):

H(Y |X) ≡
∑
a∈A

PX(a)H(Y |a)

=
∑
a∈A

PX(a)

(
−
∑
b∈B

W(b|a) lnW(b|a)

)
H(Y |X) = −

∑
a∈A,b∈B

PX,Y (a, b) lnW(b|a)

A few properties of conditional entropy are listed below:

• H(Y |X) = 0 implies that either PX,Y (a, b) = 0 or lnW(b|a) = 0. So, if PX,Y (a, b) 6= 0
then W(b|a) = 1. Thus there is a map f : A → B such that Y = f(X) with probability
one. So, Y almost surely depends on X in a deterministic fashion.

• H(Y |X) ≤ H(Y ) This property implies that knowing X decreases the entropy of Y . We
would like to show this property and we prepare this with lemma below.

Before we begin a reminder of two properties:
Independence: If we have X, Y with alphabets A,B and joint probability measure PX,Y then X
and Y are independent if and only if PX,Y (a, b) = P(a)PY (b) for all (a, b) ∈ (A× B)
Convexity of x 7→ x lnx: From basics of calculus we know that a function f(x) ∈ C2(R) is
convex if its second derivative is non-negative. For f(x) = x lnx, this implies f ′(x) = 1 + lnx
and f ′′(x) = 1

x
> 0, for all x > 0 hence the function is convex in x > 0.

1.1.6 Lemma (Log-Sum Inequality). For any non-negative a1, a2, . . . , an and strictly positive
b1, b2, . . . , bn we have

n∑
j=1

aj ln
aj
bj
≥

(
n∑

j=1

aj

)
ln


(∑n

j=1 aj

)
(∑n

j=1 bj

)

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and equality holds if and only if for all 1 ≤ j ≤ n,
aj
bj

= a1
b1

Proof. Assume a′j ≥ 0,
∑n

j=1 a
′
j = 1 and f is strictly convex, then, Jensen’s inequality gives∑n

j=1 a
′
jf(xj) ≥ f

(∑n
j=1 a

′
jxj

)
and equality holds if and only if x′js are constant for each j

where a′j > 0.

The log-sum inequality follows from choosing a′j =
bj∑n
l=i bl

, xj =
aj
bj

and f(x) = x lnx,

because then

n∑
j=1

bj∑n
l=1 bl

aj
bj

ln
aj
bj
≥

n∑
j=1

aj∑n
l=1 bl

ln

(
n∑

k=1

ak∑n
l=1 bl

)
n∑

j=1

aj ln
aj
bj
≥

n∑
j=1

aj ln

(
n∑

k=1

ak∑n
l=1 bl

)

Hence we get the asserted inequality.

We use this lemma to show that knowing X helps reduce uncertainity about Y .

1.1.7 Proposition. Given two discrete random variables X : Ω → A and Y : Ω → B, then
H(X|Y ) ≤ H(Y ) and equality holds if and only if X and Y are indpendent.

Proof. Using the definition of entropy and conditional entropy:

H(Y )−H(Y |X) =
∑
b∈B

PY (b) ln
1

PY (b)︸ ︷︷ ︸∑
(a,b)∈(A×B) PX,Y (a,b) ln 1

PY (b)

+
∑

(a,b)∈(A×B)

PX,Y (a, b) lnW(b|a)

=
∑

(a,b)∈(A×B)

PX,Y (a, b) ln
W(b|c)
PY (b)

=
∑

(a,b)∈(A×B)

PX,Y (a, b) ln
PX,Y (a, b)

PX(a)PY (b)

(Using LogSum inequality) ≥

 ∑
(a,b)∈(A×B)

PX,Y (a, b)

 ln

(∑
(a,b)∈(A×B) PX,Y (a, b)

)
(∑

(a′,b′)∈(A×B) PX(a)PY (b)
)

︸ ︷︷ ︸
=ln 1

= 0

Because the probabilities PX,Y (a, b) are non-negative, equality holds if and only if
PX,Y (a,b)

PX(a)PY (b)
= 1

when PX,Y (a, b) 6= 0. This means PX,Y (a, b) = PX(a)PY (b) for such (a, b). Using the fact that
the probabilities of all the outcomes have to sum to one, we see that this inequality holds for all
(a, b) ∈ A× B, which means that the random variables are independent.

1.1.8 Question. We have the inequality for the conditional entropy H(Y |X) ≤ H(Y ), but what
about the entropy of the conditional probability measure of Y given that X = a, H(Y |a) =
−
∑

b∈BW(b|a) lnW(b|a)?
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In general we cannot compare H(Y ) and H(Y |a). For example, consider the pair of binary
random variables X,Y .

PX,Y Y=0 Y=1
X = 0 0.8 0
X = 1 0.1 0.1

We compute:

H(Y ) = −0.9 ln 0.9− 0.1 ln 0.1 ≈ 0.33

H(Y |X = 1) = − ln 0.5 ≈ 0.69

H(Y |X) = 0.2× (− ln 0.5) + 0.8× 0 ≈ 0.14

We see that knowing the value X = 1 occurred does not necessarily decrease the entropy
resulting for the distribution of Y .

1.2 Additivity of Entropy

1.2.9 Proposition. Let X : Ω→ A, Y : Ω→ B as above, then

H(X, Y ) = H(X) +H(Y |X)

Proof. Using the definition of entropy of joint distributions:

H(X, Y ) = −
∑

a∈A,b∈B

PX,Y (a, b) lnPX,Y (a, b)

= −
∑

a∈A,b∈B

PX,Y (a, b)

(
ln

PX,Y (a, b)

PX(a)
+ lnPX(a)

)
= −

∑
a∈A

∑
b∈B

PX,Y (a, b)︸ ︷︷ ︸
PX(a)

lnPX(a)−
∑

a∈A,b∈B

PX,Y (a, b) ln
PX,Y (a, b)

PX(a)

= −
∑
a∈A

PX(a) lnPX(a)−
∑

a∈A,b∈B

PX,Y (a, b) lnW(b|a)

= H(X) +H(Y |X)

1.2.10 Corollary. Let {Xj}nj=1 be random variables with discrete alphabets, then

H(X1, . . . , Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|X1, . . . , Xn)

The proof of the corollary is done by induction over the number of random variables.
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1.3 Concavity of Entropy

1.3.11 Proposition. Given discrete random variables X, Y then

i H(PX) is concave in PX .

ii H(PX,Y ) is concave in the probability measure of X, that is, for λ ∈ [0, 1]

H(λPX1,Y + (1− λ)PX2,Y ) ≥ λH(PX1,Y ) + (1− λ)H(PX2,Y ) .

iii H(Y |X) is concave with respect to W(b|a).

Proof. .

i It suffices to show that for λ ∈ [0, 1] and the random Variables X1, X2 with probability
measures PX1 and PX2 , that H(λPX1 + (1− λ)PX2 ≥ λH(PX1) + (1− λ)H(PX2)

With Jensen’s inequality and since x lnx is strictly convex we have:

λPX1 lnPX1 + (1− λ)PX2 lnPX2 ≤ (λPX1 + (1− λ)PX2) ln(λPX1 + (1− λ)PX2)

Multiplying the above by -1 and substituting the definition of entropy, we get the required
inequality.

ii This is similar to above and can be obtained by replacing PX1 by PX1,Y and PX2 by PX2,Y .

iii Again, here we use the definition of conditional entropy:

H(Y |X) =
∑
a∈A

PX(a)
∑
b∈B

(−W(b|a) lnW(b|a))

and use the same program for the sum over the outcomes b ∈ B as in i to show the concavity.
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