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1.3 Concavity of Entropy (Continued)

1.3.12 Corollary. If X and Y are discrete random variables then H(X, Y ) ≤ H(X) +H(Y ).

Proof. In Proposition 1.1.7 we proved the inequality between conditional and unconditional

entropy, H(Y |X) ≤ H(Y ). Additionally, we have shown additivity of entropy, H(X, Y ) =
H(X) +H(Y |X), in Proposition 1.2.9. Hence

H(X, Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ).

1.3.13 Corollary. It follows by induction that for finitely many random variables X1, X2, . . . , Xn,
we have

H(X1, X2, . . . , Xn) ≤
n�

j=1

H(Xj).

1.3.14 Definition. Divergence for relative entropy between random variables X and Y with

induced probability measures PX and QY on a common alphabet A is defined by

D(PX ||QY ) :=
�

a∈A

P(a) ln
�
PX(a)

QY (a)

�

and is commonly denoted by D(X||Y ). We adopt the convection that 0 ln(0/x) = 0 if x ≥ 0
and x ln(x/0) = ∞ if x > 0.

1.3.15 Remark. We observe that in general, D(X||Y ) �= D(Y ||X).

1.3.16 Theorem. For random variables X and Y with induced measures P and Q on a common
alphabet A, D(X||Y ) ≥ 0 with equality if and only if P = Q.

Proof. By the definition for D(X||Y ) and Jensen’s Inequality we have

D(X||Y ) = −
�

a∈A

P(a) ln
�
Q(a)

P(a)

�
≥ ln

�

a∈A

P(a)
�
Q(a)

P(a)

�
= − ln

�

a∈A

Q(a) = 0.

If D(X||Y ) = 0 and P(a) �= 0 then it follows that ln(P(a)/Q(a)) = 0 for all a ∈ A. Equivalently,
P(a) = Q(a) for all a ∈ A, or P = Q. If, conversely, P = Q then the sum defining D(X||Y ) is
0 for all terms a ∈ A. Hence D(X||Y ) = 0.
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1.3.17 Remark. With positivity, the relative divergence has one property of a metric. However,

the lack of symmetry prohibits it from being a metric.

1.3.18 Corollary. Suppose the order of set A is n, and X is a random variable with induced
probability measure P on A. Then H(X) ≤ ln(n) with equality if and only if P is the uniform
distribution.

Proof. Let Q have the uniform distribution, so Q(a) = 1/n for all a ∈ A. Then 0 ≤ D(P||Q)
from above and

D(P||Q) =
�

a∈A

P(a) ln
�
P(a)
Q(a)

�
=

�

a∈A

P(a) ln(P(a)) +
�

a∈A

P(a) lnn.

Since
�

a∈A P(a) = 1 we have

0 ≤ D(P||Q) =
�

a∈A

P(a) ln(P(a)) + ln(n).

Hence − ln(n) ≤
�

a∈A P(a) ln(P(a)). Equivalently,

ln(n) ≥ −
�

a∈A

P(a) ln(P(a)) = H(X).

1.3.19 Remark. If we have the infinite alphabet A = N, then we can assume some additional

knowledge about X, for example the expected value of X, E(X) =
�∞

a=1 aP(a), to get a

non-trivial upper bound for the entropy.

1.3.20 Corollary. Let X : Ω → A be a random variable with induced measure PX on A = N.
Let µ = E(X). Then Then

H(X) ≤ µ lnµ− (µ− 1) ln(1− µ) = µ

�
−1

µ
ln

�
1

µ

�
−
�
1− 1

µ

�
ln

�
1− 1

µ

��

with equality if and only if PX(n) = (1− α)αn−1 where α = 1− 1
µ .

Proof. Let Q(n) = (1− α)αn−1
with 0 ≤ α < 1, then

0 ≤ D(PX ||Q) =
�

n∈N

PX(n) ln

�
PX(n)

Q(n)

�
= −H(X) +

�

n∈N

PX(n)
�
ln

�
α

1− α

�
− lnαn

�

= −H(X)−
�

n∈N

PX(n)n lnα = −H(X) + ln

�
α

1− α

�
− µ lnα.

Hence H(X) ≤ ln α
1−α − µ lnα. Minimizing the right hand side with respect to α gives the best

bound for the choice α = 1 − 1
µ , so H(X) ≤ µ lnµ − (µ − 1) ln(1 − µ). Equality holds by the

usual argument for relative entropy if and only if D(PX ||Q) = 0, that is, PX(n) = Q(n) for all
n ∈ N.
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An Aside for Relative Entropy

Given X1, X2, . . . , Xn independent and identically distributed random variables (i.i.d. r.v.’s) with

a discrete alphabet A that are all distributed according to either of the probability measures PX

or P �X , we wish to decide which measure is present via observing their values once. We follow

the Neyman-pearson hypothesis test strategy.

Set-up

Let the null hypothesis H0 = PX and let H1 = PX̂ . Let φ : An → {0, 1} be defined by

φ(X1, X2, . . . , Xn) =

�
0 if H0 is accepted

1 if H0 is rejected
.

The map φ has an associated acceptance region for the null hypothesis: An = {x ∈ An : φ(x) = 0}.
Similarly, φ has an associated acceptance region for H1: Ac

n = {x ∈ An : φ(x) = 1}.

Minimizing Error

There exist two types of error: false positive and false negatives.

Type I: αn := PX1,X2,...,Xn(φ(X1, . . . , Xn) = 1), so H0 is rejected although it is true.

Type 2: βn := PX̂1,X̂2,...,X̂n
(φ(X1, . . . , Xn) = 0) so H0 is accepted although H1 is true.

Neyman-Pearson Testing

For Neyman-pearson testing, having a limit for false positives is the first priority. Thus, we set a

threshold for an acceptable rate (αn) of false positives and then minimize the probability of false

negatives (βn) among all possible choices:

Given a constant � > 0 and the requirement αn ≤ �, choose Φ such that βn is

minimal.

1.3.21 Theorem. Given X1, . . . , Xn with probability distributions PX and PX̂ as above, define
the acceptance region for parameter τ > 0 by

An(τ) =

�
x ∈ An :

PX1,...,Xn

PX̂1,...,PX̂n

> τ

�

and let αn(τ) = PX1,...,Xn(Ac
n(τ)). Then if αn and βn are associated with another acceptance

region A�
n we have for every α

�
n ≤ αn that β�

n ≥ βn.

Proof. Consider the acceptance region A�
n and let τ > 0 then

α
�
n + τβ

�
n =

�

x∈A�c
n

PX1,...,Xn(x) + τ

�

x∈A�
n

PX̂1,...,X̂n
(x)
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=
�

x∈A�c
n

PX1,...,Xn(x) + τ



1−
�

x∈A�c
n

PX̂1,...,X̂n
(x)





= τ +
�

x∈A�c
n

(PX1,...,Xn(x)− τPX̂1,...,X̂n
(x)).

We observe that An(τ) = {x ∈ An : PX1,...,Xn(x) − τPX̂1,...,X̂n
(x) > 0}. Choosing A�

n =
An(τ) minimizes the right-hand side, because then the sum only contains nonpostive terms.

Consequently, α
�
n + τβ

�
n ≥ αn + τβn. That is, αn − α

�
n ≤ τ(β�

n − βn). Thus if α
�
n is bounded

above by αn then 0 ≤ β
�
n − βn and we have β

�
n ≥ βn.

We conclude that the likelihood ratio test is optimal for the purposes of minimizing the

probability of false negatives while keeping a fixed upper bound on the probability of false positives.
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