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1.3 Neyman-Pearson, continued

1.3.5 Remark. We have seen that choosing an acceptance region based on a threshold value for
the the likelihood ratio is optimal for the Neyman Pearson test problem. The asymmetry between
the treatment of errors of the first and second kind will show up in the performance of this test,
which is governed by the relative entropy, that is also not symmetric in both probability measures.
To see this, we begin by reframing divergence as expected value to make use of the properties of
that function.

1.3.1 Divergence Measures Test Effectiveness

Recall that the expected value of a random variable can be seen as a weighted average of
outcomes. More specifically, if X is a random variable with alphabet A and associated probability
PX , the expected value of X is EX [X] =

�
a∈A PX(a)a . If we consider f(a) := ln PX(a)

PY (a) (where

PY is as usual), then we may say EX [f ◦X] =
�

a∈A PX(a)f(a) is the expected value of f(X)
and we have

D(X1, X2, . . . , Xn�X̂1, X̂2, . . . , X̂n) = EX1,X2,...,Xn

�
ln

PX1,X2,...,Xn(X1, X2, . . . , Xn)

PX̂1,X̂2,...,X̂n
(X1, X2, . . . , Xn)

�

that is, divergence measures the expected value of the log of the ratio of the respective probabil-
ities. We note that, since the Xi’s and X̂i’s are independent, for any x ∈ An,

ln
PX1,X2,...,Xn(x1, x2, . . . , xn)

PX̂1,X̂2,...,X̂n
(x1, x2, . . . , xn)

= ln
PX1(x1) · · · · · PXn(xn)

PX̂1
(x̂1) · · · · · PX̂n

(xn)
.

It follows by the product-to-sum property of the log and the linearity of the expected value
function that

EX1,X2,...,Xn

�
ln

PX1,X2,...,Xn(X1, X2, . . . , Xn)

PX̂1,X̂2,...,X̂n
(X1, X2, . . . , Xn)

�
= EX1,X2,...,Xn

�
n�

j=1

ln
PXj(Xj)

PX̂j
(Xj)

�

=
n�

j=1

EXj

�
ln

PXj(Xj)

PX̂j
(Xj)

�
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which, since all the Xj’s and X̂j’s were from the same distributions (and so identically distributed,
and PXi(x) = PXj(x) for all x ∈ A, i and j), equals

=
n�

j=1

EX1

�
ln

PX1(x1)

PX̂1
(x1)

�

= nD(X1�X̂1)

Recall, if Y1, Y2, . . . , Yn are i.i.d., then Tn = 1
n

�n
j=1 Yj concentrates near its average. We

have then, by the weak law of large numbers, that for � > 0

P (|Tn − E[Tn]| > �)
n→∞−−−→ 0 .

In our case, the summands Yj are ln
PXj

(Xj)

PX̂j
(Xj)

, and as n → ∞, Tn = 1
n ln

PX1,X2,...,Xn

PX̂1,X̂2,...,X̂n

is just an

average and concentrates over EX1,X2,...,Xn [Tn], which equals D(X1�X̂1). This limit of Tn is a
good comparison for our choice of τ .

To have a meaningful test, τ must be chosen so that 1
n ln τ is close to the value where

Tn concentrates, the divergence D(X�X̂) between the two random variables. We see, from the
definition of τ, that a large value indicates good test performance, while a small value means poor
performance. By our concentration argument, divergence measures how successful the test is–we
need a large D(X�X̂) to distinguish the two measures reliably.

1.3.2 Relative Entropy and Data Processing

Another aspect of relative entropy that crops up in application involves questions we may have
in data processing. We may “throw away information” by partitioning outcomes–grouping them,
perhaps, and just keeping the information about the group to which each outcome belongs. What
should we expect of the entropy of our product?

More formally, imagine an alphabet A is partitioned, each set receiving a label from a new
alphabet {1, 2, . . . , t}:

A =
t�

i=1

Ai, Ai ∩ Aj = ∅ ∀i �= j

Our question can now be more clearly stated.

1.3.6 Question. How does the entropy of the induced measure on the new alphabet relate to the
entropy of a random variable with alphabet A? Does entropy increase, as it appears that we have
“lost” information? On the other hand, if t = 1, entropy is now zero, as there is exactly one
outcome.

1.3.7 Answer. In general, the two entropies cannot be compared. However, it turns out that the
relative entropy increases, which we may see intuitively as resulting from the loss of information
making the random variables “look more alike.”

1.3.8 Lemma (Data Processing Inequality). Given X, Y with induced probability measures P
and Q on a common alphabet A and a partition {A1,A2, . . . ,At} of A, then

D(P�Q) =
�

a∈A

P(a) ln P(a)
Q(a)
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≥
t�

i=1

P(Ai) ln
P(Ai)

Q(Ai)

1.3.9 Remark. The reader may note that P(Ai) is the probability of getting an a in the ith subset.

Proof. Begin by converting divergence into a double sum:

D(X�Y ) =
t�

i=1

�

a∈Ai

P(a) ln P(a)
Q(a)

log–sum
≥

t�

i=1

�
�

a∈A

P(a)
�
ln

�
a∈Ai

P(a)
�
a∈Ai

Q(a)

Noting that
�
a∈Ai

P(a) is exactly the probability P(Ai), this gives

D(X�Y ) ≥
t�

i=1

P(Ai) ln
P(Ai)

Q(Ai)
.

1.3.10 Question. Prompted by analysis instincts, consider the following: If D(P�Q) is small, how
”close” are P and Q?

1.3.11 Answer. The following proposition ties the sum of the distances between P(a) and Q(a)
over the entire alphabet.

1.3.12 Proposition (Pinsker). For discrete random variables X and Y with common alphabet
A,

D(P�Q) ≥ 1

2
�P−Q�21 where � · �1

is the L1

norm
=

1

2

�
�

a∈A

|P(a)−Q(a)|
�2

1.3.13 Remark. Our method will be to reduce the alphabet and then show that it is enough to
prove the reduced case.

Proof. Partition A by defining A0 := {a ∈ A | P(a) ≥ Q(a)} and A1 := A \ A0. Then, by the
data processing inequality, we know

D(P�Q) ≥
1�

i=0

P(Ai) ln
P(Ai)

Q(Ai)

If we let P̂(i) := P(Ai) and Q̂(i) := Q(Ai), then
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D(P�Q) ≥ D(P̂�Q̂)

On the other hand,

�P−Q�1 =
�

a∈A

|P(a)−Q(a)|

=
�

a∈A0

(P(a)−Q(a))−
�

a∈A1

(P(a)−Q(a)) a ∈ Ai

determines
sign of

P(a)− Q(a)
= |P(A0)−Q(A0)|+ |P(A1)−Q(A1)|
= �P̂− Q̂�1

Since �P−Q�1 = �P̂− Q̂�1, we see that it is enough to prove the inequality for the binary
case, as our preparatory remark foretold. Abbreviating, let p := P(A0) and q := Q(A0), and we
have that

D(P̂�Q̂) = p ln
p

q
+ (1− p) ln

1− p

1− q

and

�P̂− Q̂�21 = (|p− q|+ |(1− p)− (1− q)|)2

= 4(p− q)2

By making appropriate substitutions and rearranging D(P�Q) ≥ 1
2�P − Q�21, we now need

only to prove that

f(p, q) := p ln
p

q
+ (1− p) ln

1− p

1− q
− 2(p− q)2 ≥ 0

First, we fix p and look for extrema. Note that p and q take on values between 0 to 1; endpoint
tests reveal that as q → 1 or q → 0, f → ∞. Looking for critical points, set

∂

∂q
f(p, q) = −p

q
+

1− p

1− q
+ 4(p− q) = 0

which reduces to a factored form of
�
4− 1

q(1− q)

�
(p− q) = 0

And we have critical points q = 1
2 and q = p. If q = p, f(p, p) = 0, which is nonnegative, as

desired. If q = 1
2 , we considerf(p, 12) and, again, search for extrema. Our endpoint test reveals

positive values at p = 0 and p = 1. Critical points:

∂

∂p
f(p,

1

2
) = ln(p) + 1− ln(1− p)1− 4(p− 1

2
) = 0

reduces to p
1−p = e−4p+2. The left-hand side is increasing on (0, 1), while the right-hand side is

decreasing, so there is at most one solution. It turns out that p = 1
2 solves it, which means p = q
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and f(p, q) = 0 is non-negative. Since all critical points give non-negative values, we have that
f(p, q) ≥ 0.
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