# Information Theory with Applications, Math6397 <br> Lecture Notes from September 09, 2014 

taken by Tianxiao Jiang

## Warm-up

## Relative entropy for binary random variables

Let $X, Y$ have alphabet $\mathbb{A}=\{0,1\}$ and $\mathbb{P}_{X}(0)=p, \mathbb{Q}_{Y}(0)=q$, we abbreviate

$$
d(p, q)=D\left(\mathbb{P}_{X} \| \mathbb{Q}_{Y}\right)
$$

then with $h(p)=p \ln p+(1-p) \ln (1-p)$, we have

$$
\begin{aligned}
d(p, q) & =p \ln \frac{p}{q}+(1-p) \ln \frac{1-p}{1-q} \\
& =-h(p)-p \ln q-(1-p) \ln (1-q) \\
& =\underbrace{-h(p)}_{\text {binary entropy of } X}+\underbrace{s(p, q)}_{\text {linearization of binary entropy of } X \text { at } q}
\end{aligned}
$$

### 1.5 Mutual information

1.5.1 Definition. Given two discrete random variables $X$ and $Y$ with alphabets $\mathbb{A}$ and $\mathbb{B}$, we define the mutual information to be

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

1.5.2 Remarks. From the entropy inequality, $I(X ; Y) \geq 0$. Recall from additivity

$$
H(X \mid Y)=H(X, Y)-H(Y)
$$

So we get the symmetric expression

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

Moreover, we see that it can be rewritten as a divergence

$$
\begin{aligned}
I(X ; Y) & =-\sum_{a \in \mathbb{A}} \mathbb{P}_{X}(a) \ln \mathbb{P}_{X}(a)-\sum_{b \in \mathbb{B}} \mathbb{P}_{Y}(b) \ln \mathbb{P}_{Y}(b)+\sum_{(a, b) \in \mathbb{A} \times \mathbb{B}} \mathbb{P}_{X, Y}(a, b) \ln \mathbb{P}_{X, Y}(a, b) \\
& =-\sum_{(a, b) \in \mathbb{A} \times \mathbb{B}} \mathbb{P}_{X, Y}(a, b) \ln \mathbb{P}_{X}(a)-\sum_{(a, b) \in \mathbb{A} \times \mathbb{B}} \mathbb{P}_{X, Y}(a, b) \ln \mathbb{P}_{Y}(b)+\sum_{(a, b) \in \mathbb{A} \times \mathbb{B}} \mathbb{P}_{X, Y}(a, b) \ln \mathbb{P}_{X, Y}(a, b) \\
& =\sum_{(a, b) \in \mathbb{A} \times \mathbb{B}} \mathbb{P}_{X, Y}(a, b) \ln \frac{\mathbb{P}_{X, Y}(a, b)}{\mathbb{P}_{X}(a) \mathbb{P}_{Y}(b)} \\
& =D\left(\mathbb{P}_{X, Y} \| \mathbb{P}_{X} \mathbb{P}_{Y}\right)
\end{aligned}
$$

### 1.6 Conditional mutual information

1.6.1 Definition. The mutual information between $X$ and $Y$ given the outcome $Z=c$ is

$$
I(X ; Y \mid Z=c)=\sum_{(a, b) \in \mathbb{A} \times \mathbb{B}} \mathbb{W}_{X, Y}(a, b \mid c) \ln \frac{\mathbb{W}_{X, Y}(a, b \mid c)}{\mathbb{V}_{X}(a \mid c) \mathbb{U}_{Y}(b \mid c)}
$$

and the (averaged) conditional mutual information

$$
I(X ; Y \mid Z)=\sum_{c \in \mathbb{C}} \mathbb{P}_{\mathbb{Z}}(a) I(X ; Y \mid Z=c)
$$

Here, $\mathbb{W}_{X, Y}$ is the conditional probability for the joint distribution of $X$ and $Y$ given $Z=c . \mathbb{V}_{X}$ is conditional probability for $X, \mathbb{U}_{Y}$ is the conditional probability for $Y$ and $\mathbb{P}_{Z}$ is the probability measure induced by $Z$.

### 1.7 Additivity of conditional mutual information

1.7.1 Theorem. Given $X, Y, Z$ as above, then $I(X ; Y ; Z)=I(X ; Z)+I(X ; Y \mid Z)$

Proof. Use the defining equation with averaging

$$
\begin{aligned}
I(X ; Y \mid Z) & =\sum_{(a, b, c) \in \mathbb{A} \times \mathbb{B} \times \mathbb{C}} \mathbb{P}_{X, Y, Z}(a, b, c) \ln \frac{\mathbb{W}_{X, Y}(a, b \mid c)}{\mathbb{V}_{X}(a \mid c) \mathbb{U}_{Y}(b \mid c)} \\
& =H(X \mid Z)+H(Y \mid Z)-H(X, Y \mid Z)
\end{aligned}
$$

by additivity we have $H(X, Y \mid Z)=H(Y \mid Z)+H(X \mid Y, Z)$, from

$$
H(X, Y \mid Z=c)=H(Y \mid Z=c)+H(X \mid Y, Z=c)
$$

and averaging over outcomes for $Z$.
Inserting this expression for $H(X, Y \mid Z)$, we have

$$
\begin{aligned}
I(X ; Y \mid Z) & =H(X \mid Z)-H(X \mid Y, Z) \\
& =-(H(X)-H(X \mid Z))+H(X)-H(X \mid Y, Z) \\
& =-I(X ; Z)+I(X ; Y, Z)
\end{aligned}
$$

### 1.7.2 Corollary.

$$
\begin{aligned}
I\left(X ; Y_{1}, Y_{2}, \cdots, Y_{n}\right)=I\left(X ; Y_{1}\right) & +I\left(X ; Y_{2} \mid Y_{1}\right) \\
& +I\left(X ; Y_{3} \mid Y_{2}, Y_{1}\right) \\
& +\cdots \\
& +I\left(X ; Y_{n} \mid Y_{1}, \cdots, Y_{n-1}\right)
\end{aligned}
$$

### 1.8 Inequalities for mutual information

We have upper and lower bounds.
1.8.1 Theorem. With $X, Y$ as before,

$$
0 \leq I(X ; Y) \leq \min \{H(X), H(Y)\}
$$

and equality on LHS holds iff one determines the other with probability one.
Proof. LHS inequality follows from

$$
I(X ; Y)=D\left(\mathbb{P}_{X, Y} \| \mathbb{P}_{X} \mathbb{P}_{Y}\right) \geq 0
$$

also cases of equality.
RHS inequality follows from

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \longleftarrow(\text { due to the symmetric property of } X \text { and } Y)
\end{aligned}
$$

with $H(X \mid Y) \geq 0, H(Y \mid X) \geq 0$
as well as cases of equality
1.8.2 Moral. Mutual information measures how much $X, Y$ determines each other.
1.8.3 Example. Match two kinds of modalities of data by maximizing the mutual information.

### 1.9 Mutual information and Markov chains

Let $\left\{X_{j}\right\}_{j=1}^{n}$ be a Markov chain, i.e. for $x \in \mathbb{A}^{n}$

$$
\mathbb{P}_{X_{1}, X_{2}, \cdots, X_{n}}(x)=\mathbb{P}_{X_{1}}\left(x_{1}\right) \mathbb{M}_{1}\left(x_{2} \mid x_{1}\right) \cdots \mathbb{M}_{n-1}\left(x_{n} \mid x_{n-1}\right)
$$

with conditional probability measures $\mathbb{M}_{j}(\bullet \mid x)$ for transition from state $x \in \mathbb{A}$ in $j$-th step. Markov chains are characterized by the property that for all $j,\left\{X_{1}, X_{2} \cdots X_{j-1}, X_{j+1}\right\}$ is independent given $X_{j}$, i.e.

$$
\mathbb{W}_{X_{1}, X_{2} \cdots X_{j-1}, X_{j+1}}\left(x_{1}, x_{2} \cdots x_{j-1}, x_{j+1} \mid x_{j}\right)=\mathbb{V}_{X_{1}, X_{2} \cdots X_{j-1}}\left(x_{1}, x_{2} \cdots x_{j-1} \mid x_{j}\right) \underbrace{\mathbb{U}_{X_{j+1}}\left(x_{j+1} \mid x_{j}\right)}_{\mathbb{M}_{j}\left(x_{j+1} \mid x_{j}\right)}
$$

1.9.1 Theorem. A sequence of random variables $\left\{X_{j}\right\}_{j=1}^{n}$ is a Markov chain iff for all $j \in$ $\{2,3 \cdots n-1\}, I\left(X_{1}, X_{2} \cdots X_{j-1} ; X_{j+1} \mid X_{j}\right)=0$.

We need to show that equality in inequality $I(X ; Z \mid Y) \geq 0$ holds iff $X, Z$ are independent given $Y$.
This is because

$$
0 \leq I(X ; Z \mid Y=b)=\sum_{(a, c) \in \mathbb{A} \times \mathbb{C}} \mathbb{W}_{X, Z}(a, c \mid b) \ln \frac{\mathbb{W}_{X, Z}(a, c \mid b)}{\mathbb{V}_{X}(a \mid b) \mathbb{U}_{Z}(c \mid b)}
$$

so if $I(X ; Z \mid Y)=0$, terms must vanish for each $b$, which means

$$
\mathbb{W}_{X, Z}(a, c \mid b)=\mathbb{V}_{X}(a \mid b) \mathbb{U}_{Z}(c \mid b)
$$

independence of $X, Z$ gives outcomes of $Y$. Proving the converse is straightforward.

