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Warm-up
Relative entropy for binary random variables

Let X,Y have alphabet A = {0,1} and Px(0) = p, Qy(0) = ¢, we abbreviate

d(p,q) = D(Px[|Qy)

then with h(p) = plnp+ (1 — p)In(1 — p), we have

p
d(p,q)=p1n5+(1—p)ln1

= —h(p) —plng— (1 —p)In(1 —q)
= —hp) + s(p, q)
——

binary entropy of X  linearization of binary entropy of X at q

1.5 Mutual information

1.5.1 Definition. Given two discrete random variables X and Y with alphabets A and B, we
define the mutual information to be

I(X:Y) = HX) — HX]|Y)

1.5.2 Remarks. From the entropy inequality, I(X;Y) > 0. Recall from additivity
H(X|Y) = H(X,Y) - H(Y)

So we get the symmetric expression

I(X;Y)=HX)+HY)-H(X,Y).



Moreover, we see that it can be rewritten as a divergence

== Px(a)lnPx(a) = > Py(b)InPy(b)+ Y Pxy(a,b)InPxy(a,b)

acA beB (a,b)eAxB
=— Y Pxy(@bd)Px(a)— > Pxy(a,b)mPy()+ Y  Pxy(a,b)InPxy(a,b)
(a,b)eAxB (a,b)eAXB (a,b)eAXB
Pxy(a,b)
Z ]P)XY a b
(a,b)EAXB P (G)Py(b)

= D(Pxy||PxPy)

1.6 Conditional mutual information

1.6.1 Definition. The mutual information between X and Y given the outcome Z = c is

ny(a,b|c)
(X Y|Z—C nyab| :
(Z T (a0 Uy ()

and the (averaged) conditional mutual information

I(X;Y]2) =) Pya)I(X;Y|Z =)

ceC

Here, W y is the conditional probability for the joint distribution of X and Y given Z =c. V
is conditional probability for X, Uy is the conditional probability for Y and PP, is the probability
measure induced by Z .

1.7 Additivity of conditional mutual information
1.7.1 Theorem. Given X,Y, Z as above, then I(X;Y;Z) = I(X;Z)+ I[(X;Y|Z)

Proof. Use the defining equation with averaging

WX y(a, b|C)
I(X:;Y|2) = Pxyz(a,b,¢)n ;
(a,b,c)eZAX]BX(C VX(ﬂ’C)Uy(blc)

=H(X|Z)+H(Y|Z)—- H(X,Y|Z)
by additivity we have H(X,Y|Z) = H(Y|Z) + H(X|Y, Z), from
HX,)Y|Z=c¢)=HY|Z=¢)+ HX|Y,Z =c¢)

and averaging over outcomes for Z.
Inserting this expression for H(X,Y'|Z), we have
I(X:Y|2) = H(X|Z) - H(X|Y, 2)
= —(H(X) - H(X|2))+ H(X) - H(X|Y, Z)
=—-1(X;2)+1(X;Y,2)



1.7.2 Corollary.

I(X;Y1, Yo, -+ Yy) = I(X; Y1) + I(X; Ya|Y7)
+ 1(X; Y5|Y3, V1)
+ (XY Ya, -, Yy)

1.8 Inequalities for mutual information

We have upper and lower bounds.

1.8.1 Theorem. With X,Y as before,
0<I(X;Y)<min{H(X),HY)}
and equality on LHS holds iff one determines the other with probability one.

Proof. LHS inequality follows from

also cases of equality.
RHS inequality follows from

I[(X;Y) = H(X) - HXIY)
=H(Y)— H(Y|X) <— ( due to the symmetric property of X and Y')

with H(X|Y)>0,H(Y|X) >0
as well as cases of equality O

1.8.2 Moral. Mutual information measures how much X, Y determines each other.

1.8.3 Example. Match two kinds of modalities of data by maximizing the mutual information.

1.9 Mutual information and Markov chains

Let {X;}7_, be a Markov chain, i.e. for z € A"

Px, Xy, x, () = Px, (21)My (@2|21) - - My (20| 70-1)

with conditional probability measures M (e|x) for transition from state = € A in j-th step.
Markov chains are characterized by the property that for all j, {X;, Xo--- X;_1, X;41} is inde-
pendent given X, i.e.

W, Xooox 1,00 (T1, To - 1, | 2) = Vi xpex,_y (21, T2 - w1 |25) Ux L (T41]25)
—_—

M (2j+1]z;5)



1.9.1 Theorem. A sequence of random variables {X;}7_, is a Markov chain iff for all j €
{2, 3---n— 1}, ](Xl,Xz tee Xj—l; Xj+1|Xj) =0.

We need to show that equality in inequality 1(X; Z|Y') > 0 holds iff X, Z are independent
given Y.
This is because

WX’Z(CL, C|b)
Vx (a]b)Uz(c|b)

0<I(X;ZIY =b)= > Wxz(a,cb)n

(a,c)eAXC
so if I(X; Z|Y) = 0, terms must vanish for each b, which means
Wi z(a, c[b) = Vx(a|b)Uz(c|b)

independence of X, Z gives outcomes of Y.
Proving the converse is straightforward.



