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Warm-up

Relative entropy for binary random variables

Let X, Y have alphabet A = {0, 1} and PX(0) = p,QY (0) = q, we abbreviate

d(p, q) = D(PX�QY )

then with h(p) = p ln p+ (1− p) ln(1− p), we have

d(p, q) = p ln
p

q
+ (1− p) ln

1− p

1− q

= −h(p)− p ln q − (1− p) ln (1− q)

= −h(p)� �� �
binary entropy of X

+ s(p, q)� �� �
linearization of binary entropy of X at q

1.5 Mutual information

1.5.1 Definition. Given two discrete random variables X and Y with alphabets A and B, we
define the mutual information to be

I(X;Y ) = H(X)−H(X|Y )

1.5.2 Remarks. From the entropy inequality, I(X;Y ) ≥ 0. Recall from additivity

H(X|Y ) = H(X, Y )−H(Y )

So we get the symmetric expression

I(X;Y ) = H(X) +H(Y )−H(X, Y ) .
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Moreover, we see that it can be rewritten as a divergence

I(X;Y ) = −
�

a∈A

PX(a) lnPX(a)−
�

b∈B

PY (b) lnPY (b) +
�

(a,b)∈A×B

PX,Y (a, b) lnPX,Y (a, b)

= −
�

(a,b)∈A×B

PX,Y (a, b) lnPX(a)−
�

(a,b)∈A×B

PX,Y (a, b) lnPY (b) +
�

(a,b)∈A×B

PX,Y (a, b) lnPX,Y (a, b)

=
�

(a,b)∈A×B

PX,Y (a, b) ln
PX,Y (a, b)

PX(a)PY (b)

= D(PX,Y �PXPY )

1.6 Conditional mutual information

1.6.1 Definition. The mutual information between X and Y given the outcome Z = c is

I(X;Y |Z = c) =
�

(a,b)∈A×B

WX,Y (a, b|c) ln
WX,Y (a, b|c)

VX(a|c)UY (b|c)

and the (averaged) conditional mutual information

I(X;Y |Z) =
�

c∈C

PZ(a)I(X;Y |Z = c)

Here, WX,Y is the conditional probability for the joint distribution of X and Y given Z = c. VX

is conditional probability for X, UY is the conditional probability for Y and PZ is the probability

measure induced by Z .

1.7 Additivity of conditional mutual information

1.7.1 Theorem. Given X, Y, Z as above, then I(X;Y ;Z) = I(X;Z) + I(X;Y |Z)

Proof. Use the defining equation with averaging

I(X;Y |Z) =
�

(a,b,c)∈A×B×C

PX,Y,Z(a, b, c) ln
WX,Y (a, b|c)

VX(a|c)UY (b|c)

= H(X|Z) +H(Y |Z)−H(X, Y |Z)

by additivity we have H(X, Y |Z) = H(Y |Z) +H(X|Y, Z), from

H(X, Y |Z = c) = H(Y |Z = c) +H(X|Y, Z = c)

and averaging over outcomes for Z.

Inserting this expression for H(X, Y |Z), we have

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)
= − (H(X)−H(X|Z)) +H(X)−H(X|Y, Z)
= −I(X;Z) + I(X;Y, Z)
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1.7.2 Corollary.

I(X;Y1, Y2, · · · , Yn) = I(X;Y1) + I(X;Y2|Y1)

+ I(X;Y3|Y2, Y1)

+ · · ·
+ I(X;Yn|Y1, · · · , Yn−1)

1.8 Inequalities for mutual information

We have upper and lower bounds.

1.8.1 Theorem. With X, Y as before,

0 ≤ I(X;Y ) ≤ min{H(X), H(Y )}

and equality on LHS holds iff one determines the other with probability one.

Proof. LHS inequality follows from

I(X;Y ) = D(PX,Y �PXPY ) ≥ 0

also cases of equality.

RHS inequality follows from

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X) ←− ( due to the symmetric property of X and Y )

with H(X|Y ) ≥ 0, H(Y |X) ≥ 0
as well as cases of equality

1.8.2 Moral. Mutual information measures how much X, Y determines each other.

1.8.3 Example. Match two kinds of modalities of data by maximizing the mutual information.

1.9 Mutual information and Markov chains

Let {Xj}nj=1 be a Markov chain, i.e. for x ∈ An

PX1,X2,··· ,Xn(x) = PX1(x1)M1(x2|x1) · · ·Mn−1(xn|xn−1)

with conditional probability measures Mj(•|x) for transition from state x ∈ A in j-th step.

Markov chains are characterized by the property that for all j, {X1, X2 · · ·Xj−1, Xj+1} is inde-

pendent given Xj, i.e.

WX1,X2···Xj−1,Xj+1(x1, x2 · · · xj−1, xj+1|xj) = VX1,X2···Xj−1(x1, x2 · · · xj−1|xj)UXj+1(xj+1|xj)� �� �
Mj(xj+1|xj)
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1.9.1 Theorem. A sequence of random variables {Xj}nj=1 is a Markov chain iff for all j ∈
{2, 3 · · ·n− 1}, I(X1, X2 · · ·Xj−1;Xj+1|Xj) = 0.

We need to show that equality in inequality I(X;Z|Y ) ≥ 0 holds iff X,Z are independent

given Y .

This is because

0 ≤ I(X;Z|Y = b) =
�

(a,c)∈A×C

WX,Z(a, c|b) ln
WX,Z(a, c|b)

VX(a|b)UZ(c|b)

so if I(X;Z|Y ) = 0, terms must vanish for each b, which means

WX,Z(a, c|b) = VX(a|b)UZ(c|b)

independence of X,Z gives outcomes of Y .

Proving the converse is straightforward.
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