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Sources and Coding, Continued

2.3 Block Codes For DMS, Continued

In the last lecture, we presented the asymptotic equipartition principle (AEP), which roughly states

that when given a DMS and sufficiently large n, then an outcome sequence x = {x1, x2, ..., xn}
is most likely occur within the ”important set” A

n

�
and with approximately the same probability

as any other y ∈ A
n

�
. This result is the key to proving the following results about reconstruction

under block coding. We concluded the last lecture by stating the Block Coding Theorem, but we

did not have time to present proof, so we resume today’s lecture with a proof of this theorem.

For the readers’ convenience, we restate the theorem again here.

2.3.7 Theorem. (Block Coding Theorem) Let {Xj}∞j=1 be a DMS with entropy H(X1) and
let � > 0, then there exists δ ∈ (0, �) and a sequence of codes {(Cn,φn)}∞n=1 with block sizes
{mn}∞n=1 (i.e., |en| = mn), and there exist maps {ψn}∞n=1, ψn : Cn → An such that

1

n
ln(mn) < H(X1) + δ

and
P(ψn ◦ φn(X1, ..., Xn) �= (X1, ..., Xn)) < �

for all sufficiently large n.
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Proof. Fix δ ∈ (0, �). Identify elements in A
n

δ/2 with codewords in a set C∗
n
in such a way that

there is a 1 − 1 map from A
n

δ/2 to C∗
n
, then extend this 1− 1 map to a map, φn, defined on all

of An by setting φn(x) = c0 for all x /∈ A
n

δ/2 and let Cn be the disjoint union Cn = C∗
n
∪̇{c0}.

Now choose n large enough so that
nδ

2 > ln(2) and so that P((x1, ..., xn) /∈ A
n

δ/2) <
δ

2 (as in the

Shannon-McMillan-Breiman theorem from the last lecture). This yields

mn = |An

δ/2|+ 1

< e
n(H(X1)+δ/2) + 1 (by A.E.P )

< 2en(H(X1)+δ/2)

< e
n(H(X1)+δ) (because 2 = e

ln(2)
< e

n
δ
2 )

and hence
1

n
ln(mn) < H(X1) + δ.

Finally, consider the map which is the left inverse of the restriction φn|An
δ/2

and extend this to the

map, ψn, defined on all of Cn by setting ψn(c0) = x for ANY choice of x ∈ An. This gives us

P (ψn ◦ φn(X1, ..., Xn) �= (X1, ..., Xn)) ≤ P((X1, ..., Xn) /∈ A
n

δ/2)

<
δ

2
< �

as desired.

Now we provide a converse to this theorem, which states that reconstruction fails with over-

whelming probability when the codebooks are not sufficiently large. Once again, this result

depends heavily on the asymptotic equipartitioning principle.

2.3.8 Theorem. (Converse To Block Coding) If {(Cn,φn)}∞n=1 is a sequence of codes with
codebook sizes {mn}∞n=1 such that lim sup

n→∞

1
n
ln(mn) < H(X1), then for any λ > 0 and any

sequence of pairs {(φn : An → Cn,ψn : Cn → An)}∞
n=1 one has

P(ψn ◦ φn(X1, ..., Xn) �= (X1, ..., Xn)) ≥ 1− λ.

Proof. Let Sn ⊆ An denote the set of outcomes where ψn ◦φn(x1, ..., xn) = (x1, ..., xn), so that

|Sn| ≤ |Cn| = mn. By the assumption that lim sup
n→∞

1
n
ln(mn) < H(X1), there exists δ ∈ (0,λ/2)

and N0 such that
1

n
ln(|Sn|) ≤

1

n
ln(mn) < H(X1)− 2δ

for all n > N0, and exponentiating this inequality gives

|Sn| ≤ |Cn| = mn < e
n(H(X1)−2δ)

(1)

for all n > N0. By Shannon-McMillan-Breiman’s theorem (see last lecture), there exists an N1

such that

P((X1, ..., Xn) /∈ A
n

δ
) < δ (2)
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for all n > N1. Therefore, by choosing

n > max(N0, N1, ln(
2

λ
)/δ),

we obtain the the following:

P (ψn ◦ φn(X1, ..., Xn) = (X1, ..., Xn)) =
�

x∈S

PX1,...,Xn(x1, ..., xn)

=
�

x∈S∩An
δ

PX1,...,Xn(x1, ..., xn) +
�

x∈S∩(An
δ )

c

PX1,...,Xn(x1, ..., xn)

≤ |Sn|max
x∈An

δ

PX1,...,Xn(x1, ..., xn) +
�

x∈S∩(An
δ )

c

PX1,...,Xn(x1, ..., xn)

�
the first term follows by (1)

and the definition of An

δ

�
≤ e

n(H(X1)−2δ)
e
−n(H(X1)−δ) + PX1,...,Xn(x ∈ (An

δ
)c)

( by (2) ) ≤ e
−nδ + δ

�
by δ ∈ (0, λ2 ) and

n > ln( 2
λ
)/δ

�
<

λ

2
+

λ

2
= λ.

Consequently, by considering the complement, we obtain

P(ψn ◦ φn(X1, ..., Xn) �= (X1, ..., Xn)) ≥ 1− λ.

As we see from the last two theorems, the value lim sup
n→∞

1
n
ln(mn) plays a significant role in

the theory of block coding. This justifies the following definition.

2.3.9 Definition. Given a block code sequence {(Cn,φn)}∞n=1 with mn = |Cn|, we call

R = lim sup
n→∞

1

n
ln(mn)

the block code’s compression rate.

In summary, if R < H(X1), then for all code sequences the probability of decoding error

converges to 1 as n → ∞. Conversely, if R > H(X1), then there exists a sequence of codes

such that the probability of decoding error converges to 0 as n → ∞.

2.3.10 Remark. Coding works because there are ”small” {An

�
} of size |An

�
| ∝ e

nH(X1) with

PX1,...,Xn(A
n

�
) < �.

A natural followup goal is to find such sets for more general sources, which leads us to the next

section.
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2.4 Block Codes for Stationary Ergodic Sources

In the preceding section, we were able to provide results regarding how well reconstruction works

under block coding for a DMS. In this section, we turn our attention to generalizing these results

to other types processes, and it turns out that this can be done for a process which is stationary

and ergodic. As we will see, much of this will work because we will be able to extend the AEP

to this scenario.

2.4.11 Definition. A stationary source is a stochastic process {Xj}∞j=−∞ with the property

that P(X ∈ A) = P(X ◦ τ
j ∈ A), where A = {Xi1 = x1, Xi2 = x2, ..., Xin = xn} and

(X ◦ τ j)l = Xl+j for all l, j ∈ Z.

2.4.12 Definition. A source {Xj}∞j=−∞ is called ergodic if all events A such that {X ∈ A} =
{X ◦ τ j ∈ A} satisfy P(X ∈ A) ∈ {0, 1}.

In order to proceed, we state without proof Birkhoff’s ergodic theorem, which will provide

some of the necessary machinery for the rest of this section.

2.4.13 Theorem. (Birkhoff) If {Xj}∞j=−∞ is stationary, then it is ergodic if and only if for every
k ∈ N and for all functions f : Ak → [0,∞) such that E(f(Xi1 , ..., Xik

)) < ∞, we have for all
i1, ..., ik ∈ Z that

P
�

lim
n→∞

1

n

n�

j=1

f(Xi1+j, ..., Xik+j) = E(f(Xi1 , ..., Xik
))

�
= 1.
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