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Since the AEP holds, we have block coding for the stationary ergodic case as for DMS.

2.3.12 Theorem. Let {Xj}∞j=−∞ be a stationary ergodic source and H∞ = limn→∞ H(Xn|
X1, X2, X3, . . . , Xn) then for every � > 0 there is δ, 0 < δ < � and a sequence of codes.

{(Cn,φn)}∞n=1 with coding rate R = limn→∞
1
n ln |Cn| < H∞ + δ such that for all sufficiently

large n, P(decoding error) < �

Proof. As before, since you only use AEP.

We also have the converse of block coding:

2.3.13 Theorem. Let {(Cn,φn)}∞n=1 be a sequence of block codes with R = lim sup
n

1
n ln |Cn| <

then for all λ > 0 and any choice {ψn}∞n=1 if n is sufficiently large,

we have P(decoding error) > 1− λ.

Proof. As before.

2.3.14 Question. There are instances in which we would like to have no mistakes, a loss-less

situation. How can we get codes such that

P(decoding error)
n−→∞−−−−→ 0 or even P(decoding error) = 0?

2.3.15 Answer. Allow an infinite size code book

2.4 Separable Codes and Prefix Codes

Block coding in reality uses a sequence x ∈ An
that is mapped to Qn(x) ∈ B�

for a code alphabet

B with size |B| = K. You can think of K as the base of a number system, which motivates calling

this K-ary encoding.
When the length of the code sequence is no longer fixed, we speak of fixed-variable coding,

with the codebook a subset of
�∞

�=1 B�

2.4.16 Definition. A map φ with range C ⊂
�∞

�=1 B�
is called regular if it is 1− 1.

Usually we need to encode sequences {x1, x2, . . . , xn}, with xj ∈ A.
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2.4.17 Definition. A code (C,φ) is called separable if we can extend the 1 − 1 map φ to

sequences by concatenation,

φ({x1, x2, . . . , xm}) = {φ(x1),φ(x2), . . . ,φ(xm)}

and this concatenation map is invertible for all m ∈ N.

So if A = {A,B,C,D,E,F}, B = {0, 1} and we chose block length 1 for A, we could encode

in the way described in Table 2 to achieve a separable code.

x ∈ A φ(x)

A 0

B 10

C 110

D 1110

E 11110

F 111110

Table 2: Example of a separable binary code for source alphabet {A,B,C,D,E, F}.

Usually, we need to read the entire message to separate words, however our example shows

that there is a method that allows for iterative decoding. These are called prefix codes.

2.4.18 Definition. A code φ : A −→ C =
�∞

�=1 B�
is called a prefix code if no code-word is the

prefix of another.

2.4.19 Example. Prefixes of {b1, b2, . . . , b�} ∈ B�
are {b1}, {b1b2}, {b1b2b3} . . . , {b1b2, . . . , b�}

2.4.20 Example. Examples of fixed-variable codes

• C1 = {{0, 0}{0, 1}{1, 1}{1, 0, 0}{1, 0, 1}}

• C2 = {{0, 0}{1, 0}{1, 1}{0, 0, 1}{1, 0, 1}}

• C3 = {{0, 0}{0, 1}{1, 1}{1, 0, 0}{1, 1, 0}}

2.4.21 Question. Which of these is prefix / separable? Is there a systematic way to find out if

something is a prefix code or separable?

2.4.22 Answer. We can build a tree!
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(a) C1 = {{0, 0}{0, 1}{1, 1}{1, 0, 0}{1, 0, 1}}.
C1 is a valid prefix code.
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(b) C2 = {{0, 0}{1, 0}{1, 1}{0, 0, 1}{1, 0, 1}}.
C2 is a not a prefix code, but it is separable because it is
a backward prefix.
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(c) C3 = {{0, 0}{0, 1}{1, 1}{1, 0, 0}{1, 1, 0}}.
C3 we can see is neither prefix or separable with the
sequence {1, 1, 0, 0, 0, 1, 0, 0} could be interpreted as
{{1, 1, 0}, {0, 1}, {0, 0}}or{{1, 1}, {0, 0}, {1, 0, 0} }

2.4.23 Remark. We note that the K-ary prefix codes are characterized by a K-ary tree with

nodes (vertices with ≥ 2 adjacent nodes) and leaves (vertices with only one edge).

Decoding is a simple iterative procedure. While reading along the coded sequence and fol-

lowing the tree, if we arrive at a leaf (diamond symbol) we record the coded symbol and start

again from the root.

2.4.24 Question. How long do codewords have to be?

2.4.25 Theorem. Given |B| = k, then for any separable code φ : A →
�∞

�=1 B�
,

�

x∈A

K
−�(x) ≤ 1 .

Here �(x) is the length of φ(x) and the size of A is implicit as you are summing over all elements.

Proof. Assigning n�max as the maximal length of φ(x), x ∈ A, Consider the n-th power of the
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left-hand side

(
�

x∈A

K
−�(x))n =

�

x1∈A

�

x2∈A

· · ·
�

xn∈A

K
−�(x1)−�(x2)···−�xn

=
�

(x1,x2,...,xn)∈An

K
−�(x1,x2,...,xn)

≤
n�max�

m=1

A(m)� �� �
number of codewords
of size A(m)≤Km

K
−m

≤ n�max

so taking the n-th root on both sides and n→ ∞, we get
�

x∈A K
−�(x) ≤ (n�max)

1
n

n→∞−−−→ 1

This is often called the Kraft inequality and it tells you how much flexibility you have.

2.4.26 Question. How long is a codeword on average?

2.4.27 Theorem. Given a DMS with values in A and induced measure Q on A
for all j ∈ {1, 2, . . . } if code is separable

E[�(Xj)] ≥ HK(Q)� �� �
K-ary entropy, with log of base K instead of ln

.

Which of the choices that the Kraft inequality gave you will let you get close to the bound?

Huffman coding is the answer.
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