
Information Theory with Applications, Math6397
Lecture Notes from September 25, 2014

taken by Carlos Ortiz

Last Time

• Separable Codes

• Prefix Codes

• Kraft’s Inequality

2.4.27 Theorem. Given DMS with values in A and induced measure Q, then for all j ∈ N and
separable codes,

E[l(Xj)] ≥ HK(Q)

where HK(Q) is the K-ary entropy; e.g. we use log base K instead of base e.

Proof. If we take the natural logarithm in both sides of the Kraft’s inequality notice that,

0 ≤ − ln(
�

x∈A

K
−l(x)) =

�

x∈A

Q(x) ln(

�
x∈A Q(x)

K−l(x)
) ≤

�

x∈A

Q(x) ln(
Q(x)

K−l(x)
)

=
�

x∈A

Q(x) ln(Q(x))−
�

x∈A

−Q(x)l(x) ln(k) = −H(Q) + ln(K)E[l(xj)]

Hence we get,
0 ≤ −H(Q) + ln(K)E[l(xj)]

Now if we divide by ln(k) both sides we get that,

E[l(xj)] ≥ HK(Q)

2.4.28 Question. Can we do any better? What about performance limits of prefix codes?

2.4.29 Theorem. If a sequence {l(x)}x∈A satisfies the Kraft inequality then there exist a prefix
code φ with lengths

l(x) = |φ(X)|

1

Proof. We show existence by constructing an appropriate tree. Let αk = |{x ∈ A : l(x) = k}|
and lmax = supx∈A l(x). We know by assumption that

lmax�

i=1

αiK
−i =

�

x∈A

K
l(x) ≤ 1

Now if lmax < ∞ we can rearrange the terms in the above finite sum to deduce that,

α1 ≤ K

and

αj ≤ K
j −

j−1�

m=1

αmK
j−m

for j = 2, ..., lmax. Next we recursively built the code tree by pruning a full infinite K-ary tree.
Start at the root (”Level 0”) and consider the nodes at the first level. Prune the tree below α1

nodes and turn them into leaves (codewords). Proceed to the next. The full K-ary tree has kK2

nodes at this level and after pruning we retain K
2 − α1K. Prune the tree below α2 of those

nodes and turn them into leaves. At the jth level we have,

αj ≤ K
j −

j−1�

m=1

αmK
j−m

nodes, which is by assumption bigger that αj. We stop at the j = lmax or continue inductively
if lmax = ∞.

2.4.30 Question. How can we assign code lengths based on probability of outcomes in A to
generate short average codewords lengths?

2.4.31 Theorem. (Shannon-Fano) Given a discrete memoryless source {Xj}∞j=1 with induced
measure Q and K-ary block codes with l(x) = �− logk(Q(X))�, then the Kraft inequality holds
and

HK(X) ≤ E[l(X)] ≤ HK(X) + 1

Proof. Notice that,
�

x∈A

K
−l(x) =

�

x∈A

K
−�− logK(Q(X))� ≤

�

x∈A

K
logK(Q(X)) =

�

x∈A

Q(x) = 1

thus the Kraft inequality holds. In addition,

− logK(Q(x)) ≤ l(x) ≤ −logK(Q(x)) + 1

and if we average over all x ∈ A with respect to Q we get,

HK(X) ≤ E[l(X)] ≤ HK(X) + 1 .

2

2.4.32 Example.
Let A = {1, 2, 3, 4} with Q(1) = 0.4, Q(2) = 0.3, Q(3) = 0.2 and Q(4) = 0.1. Now if K = 2
we have that α1 = �− log2(0.4))� = 2, α2 = �− log2(0.3))� = 2, α3 = �− log2(0.2))� = 3, and
α4 = �− log2(0.1))� = 4. If we take a look at our code tree,

•

0.4

0

0.3

1

0

0.2

0

0.1

0

1

0 1

1

we see that E[l(X)] = 2.4 and this is not optimal since,

•

0.4

0

0.3

1

0

0.2

0

0.1

1

1

has E[l(X)] = 2.

2.4.33 Question. Can we get closer to this lower bound?

2.4.34 Answer. Work with the alphabet An instead of A.

2.4.35 Corollary.

H(X1) ≤
1

n
E[l(X1, ..., Xn)] ≤ H(X1) +

1

n

Proof.

nH(X1) = H(X1, ..., Xn) ≤ E[l(X1, ..., Xn)] ≤ H(X1, ..., Xn) + 1 = nH(X1) + 1

2.4.36 Remark. These bounds have analogous formulations for stationary and ergodic sources.

3

2.5 Huffman Code

2.5.37 Question. Can we find an optimal average length code for a given discrete memoryless
source?

2.5.38 Proposition. Given discrete memoryless source with induced measure Q such that
H(Q) < ∞, then the minimum average length binary code has a code tree without unused
leaves.

Proof. Suppose we have a code tree with unused leaves, then we would have one the following
two situations,

j-level

0 1

j-level

0 1

then we can shorten the tree, just like we did in 2.4.32, making E[l(X)] smaller.

2.5.39 Proposition. Suppose we have a code tree with unused leaves, there is a optimal binary
prefix code such that two given codewords of lowest probability p1 and p2 only differ in the last
digit.

Proof. Suppose the smallest probabilites are p1 and p2, p1 ≤ p2, associated with symbols a1 and
a2, respectively. If ai, aj are the pair of symbols with the longest codewords, then compare a1

and ai, and if a1 �= ai, then swap a1 with ai. After that, take aj and compare it to a2. If a2 �= aj

then swap a2 with aj. Notice that each step in this procedure will not increase the probability
of symbols with longer codewords, so it will not increase the expected codeword length. On the
other had, it will lead to the lowest probabilities becoming siblings in the longest branch of the
tree. Notice that this is the case even if one or both of a1 or a2 are identical with ai or aj, because
in that case leaves in the longest branch are exchanged if ai �= a1 = aj or aj �= a2 = ai.

4

