Information Theory with Applications, Math6397
 Lecture Notes from September 25, 2014
 taken by Carlos Ortiz

Last Time

- Separable Codes
- Prefix Codes
- Kraft's Inequality
2.4.27 Theorem. Given DMS with values in \mathbb{A} and induced measure \mathbb{Q}, then for all $j \in \mathbb{N}$ and separable codes,

$$
\mathbb{E}\left[l\left(X_{j}\right)\right] \geq H_{K}(\mathbb{Q})
$$

where $H_{K}(\mathbb{Q})$ is the K-ary entropy; e.g. we use \log base K instead of base e.
Proof. If we take the natural logarithm in both sides of the Kraft's inequality notice that,

$$
\begin{aligned}
& 0 \leq-\ln \left(\sum_{x \in \mathbb{A}} K^{-l(x)}\right)=\sum_{x \in \mathbb{A}} Q(x) \ln \left(\frac{\sum_{x \in \mathbb{A}} Q(x)}{K^{-l(x)}}\right) \leq \sum_{x \in \mathbb{A}} Q(x) \ln \left(\frac{Q(x)}{K^{-l(x)}}\right) \\
& =\sum_{x \in \mathbb{A}} Q(x) \ln (Q(x))-\sum_{x \in \mathbb{A}}-Q(x) l(x) \ln (k)=-H(Q)+\ln (K) \mathbb{E}\left[l\left(x_{j}\right)\right]
\end{aligned}
$$

Hence we get,

$$
0 \leq-H(Q)+\ln (K) \mathbb{E}\left[l\left(x_{j}\right)\right]
$$

Now if we divide by $\ln (k)$ both sides we get that,

$$
\mathbb{E}\left[l\left(x_{j}\right)\right] \geq H_{K}(\mathbb{Q})
$$

2.4.28 Question. Can we do any better? What about performance limits of prefix codes?
2.4.29 Theorem. If a sequence $\{l(x)\}_{x \in \mathbb{A}}$ satisfies the Kraft inequality then there exist a prefix code ϕ with lengths

$$
l(x)=|\phi(X)|
$$

Proof. We show existence by constructing an appropriate tree. Let $\alpha_{k}=|\{x \in \mathbb{A}: l(x)=k\}|$ and $l_{\text {max }}=\sup _{x \in \mathbb{A}} l(x)$. We know by assumption that

$$
\sum_{i=1}^{l_{\max }} \alpha_{i} K^{-i}=\sum_{x \in \mathbb{A}} K^{l(x)} \leq 1
$$

Now if $l_{\max }<\infty$ we can rearrange the terms in the above finite sum to deduce that,

$$
\alpha_{1} \leq K
$$

and

$$
\alpha_{j} \leq K^{j}-\sum_{m=1}^{j-1} \alpha_{m} K^{j-m}
$$

for $j=2, \ldots, l_{\max }$. Next we recursively built the code tree by pruning a full infinite K-ary tree. Start at the root ("Level 0 ") and consider the nodes at the first level. Prune the tree below α_{1} nodes and turn them into leaves (codewords). Proceed to the next. The full K-ary tree has $k K^{2}$ nodes at this level and after pruning we retain $K^{2}-\alpha_{1} K$. Prune the tree below α_{2} of those nodes and turn them into leaves. At the j th level we have,

$$
\alpha_{j} \leq K^{j}-\sum_{m=1}^{j-1} \alpha_{m} K^{j-m}
$$

nodes, which is by assumption bigger that α_{j}. We stop at the $j=l_{\text {max }}$ or continue inductively if $l_{\max }=\infty$.
2.4.30 Question. How can we assign code lengths based on probability of outcomes in \mathbb{A} to generate short average codewords lengths?
2.4.31 Theorem. (Shannon-Fano) Given a discrete memoryless source $\left\{X_{j}\right\}_{j=1}^{\infty}$ with induced measure Q and K-ary block codes with $l(x)=\left\lceil-\log _{k}(Q(X))\right\rceil$, then the Kraft inequality holds and

$$
H_{K}(X) \leq E[l(X)] \leq H_{K}(X)+1
$$

Proof. Notice that,

$$
\sum_{x \in A} K^{-l(x)}=\sum_{x \in A} K^{-\left\lceil-\log _{K}(Q(X))\right\rceil} \leq \sum_{x \in A} K^{\log _{K}(Q(X))}=\sum_{x \in A} Q(x)=1
$$

thus the Kraft inequality holds. In addition,

$$
-\log _{K}(Q(x)) \leq l(x) \leq-\log _{K}(Q(x))+1
$$

and if we average over all $x \in A$ with respect to Q we get,

$$
H_{K}(X) \leq E[l(X)] \leq H_{K}(X)+1
$$

2.4.32 Example.

Let $\mathbb{A}=\{1,2,3,4\}$ with $Q(1)=0.4, Q(2)=0.3, Q(3)=0.2$ and $Q(4)=0.1$. Now if $K=2$ we have that $\left.\left.\left.\alpha_{1}=\left\lceil-\log _{2}(0.4)\right)\right\rceil=2, \alpha_{2}=\left\lceil-\log _{2}(0.3)\right)\right\rceil=2, \alpha_{3}=\left\lceil-\log _{2}(0.2)\right)\right\rceil=3$, and $\left.\alpha_{4}=\left\lceil-\log _{2}(0.1)\right)\right\rceil=4$. If we take a look at our code tree,

we see that $\mathbb{E}[l(X)]=2.4$ and this is not optimal since,

has $\mathbb{E}[l(X)]=2$.
2.4.33 Question. Can we get closer to this lower bound?
2.4.34 Answer. Work with the alphabet \mathbb{A}^{n} instead of \mathbb{A}.

2.4.35 Corollary.

$$
H\left(X_{1}\right) \leq \frac{1}{n} E\left[l\left(X_{1}, \ldots, X_{n}\right)\right] \leq H\left(X_{1}\right)+\frac{1}{n}
$$

Proof.

$$
n H\left(X_{1}\right)=H\left(X_{1}, \ldots, X_{n}\right) \leq E\left[l\left(X_{1}, \ldots, X_{n}\right)\right] \leq H\left(X_{1}, \ldots, X_{n}\right)+1=n H\left(X_{1}\right)+1
$$

2.4.36 Remark. These bounds have analogous formulations for stationary and ergodic sources.

2.5 Huffman Code

2.5.37 Question. Can we find an optimal average length code for a given discrete memoryless source?
2.5.38 Proposition. Given discrete memoryless source with induced measure Q such that $H(Q)<\infty$, then the minimum average length binary code has a code tree without unused leaves.

Proof. Suppose we have a code tree with unused leaves, then we would have one the following two situations,

then we can shorten the tree, just like we did in 2.4.32, making $\mathbb{E}[l(X)]$ smaller.
2.5.39 Proposition. Suppose we have a code tree with unused leaves, there is a optimal binary prefix code such that two given codewords of lowest probability p_{1} and p_{2} only differ in the last digit.

Proof. Suppose the smallest probabilites are p_{1} and $p_{2}, p_{1} \leq p_{2}$, associated with symbols a_{1} and a_{2}, respectively. If a_{i}, a_{j} are the pair of symbols with the longest codewords, then compare a_{1} and a_{i}, and if $a_{1} \neq a_{i}$, then swap a_{1} with a_{i}. After that, take a_{j} and compare it to a_{2}. If $a_{2} \neq a_{j}$ then swap a_{2} with a_{j}. Notice that each step in this procedure will not increase the probability of symbols with longer codewords, so it will not increase the expected codeword length. On the other had, it will lead to the lowest probabilities becoming siblings in the longest branch of the tree. Notice that this is the case even if one or both of a_{1} or a_{2} are identical with a_{i} or a_{j}, because in that case leaves in the longest branch are exchanged if $a_{i} \neq a_{1}=a_{j}$ or $a_{j} \neq a_{2}=a_{i}$.

