Information Theory with Applications, Math6397 Lecture Notes from October 2, 2014

taken by Nathaniel Hammen

Last Time:

- Huffman's Code, also for k-ary trees
- Discrete Memoryless channels
- Channel coding with fixed length transition codes
- Jointly typical sequences

3 Coding for discrete channels (continued)

3.1 The discrete memoryless channel (continued)

3.1.9 Theorem. Given a discrete memoryless source $\left\{X_{j}\right\}_{j=1}^{\infty}$ and a discrete memoryless channel $\gamma: \mathbb{A} \times \Omega \rightarrow \mathbb{B}$, denoting $Y_{j}=\gamma\left(X_{j}\right)$ for all $j \in \mathbb{N}$, then if $\ln \left(\mathbb{P}_{X_{1}}\left(X_{1}\right)\right), \ln \left(\mathbb{P}_{Y_{1}}\left(Y_{1}\right)\right)$ and $\ln \left(\mathbb{P}_{X_{1}, Y_{1}}\left(X_{1}, Y_{1}\right)\right)$ are integrable, we have

$$
\begin{aligned}
&-\frac{1}{n} \ln \left(\mathbb{P}_{X_{1}, \ldots, X_{n}}\left(X_{1}, \ldots, X_{n}\right)\right) \rightarrow H\left(X_{1}\right) \\
&-\frac{1}{n} \ln \left(\mathbb{P}_{Y_{1}, \ldots, Y_{n}}\left(Y_{1}, \ldots, Y_{n}\right)\right) \rightarrow H\left(Y_{1}\right)
\end{aligned}
$$

and

$$
-\frac{1}{n} \ln \left(\mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)\right) \rightarrow H\left(X_{1}, Y_{1}\right)
$$

Proof. By independence,

$$
\begin{array}{r}
\ln \left(\mathbb{P}_{X_{1}, \ldots, X_{n}}\left(X_{1}, \ldots, X_{n}\right)\right)=\ln \left(\prod_{j=1}^{n} \mathbb{P}_{X_{j}}\left(X_{j}\right)\right)=\sum_{j=1}^{n} \ln \left(\mathbb{P}_{X_{j}}\left(X_{j}\right)\right) \\
\quad \ln \left(\mathbb{P}_{Y_{1}, \ldots, Y_{n}}\left(Y_{1}, \ldots, Y_{n}\right)\right)=\ln \left(\prod_{j=1}^{n} \mathbb{P}_{Y_{j}}\left(Y_{j}\right)\right)=\sum_{j=1}^{n} \ln \left(\mathbb{P}_{Y_{j}}\left(Y_{j}\right)\right)
\end{array}
$$

$$
\begin{aligned}
\ln \left(\mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)\right) & =\ln \left(\prod_{j=1}^{n} \mathbb{P}_{X_{j}, Y_{j}}\left(X_{j}, Y_{j}\right)\right) \\
& =\sum_{j=1}^{n} \ln \left(\mathbb{P}_{X_{j}, Y_{j}}\left(X_{j}, Y_{j}\right)\right)
\end{aligned}
$$

We then get convergence by the strong law of large numbers:

$$
\begin{aligned}
&-\frac{1}{n} \sum_{j=1}^{n} \ln \left(\mathbb{P}_{X_{j}}\left(X_{j}\right)\right) \rightarrow-\mathbb{E}\left[\ln \left(\mathbb{P}_{X_{1}}\left(X_{1}\right)\right)\right]=H\left(X_{1}\right) \\
&-\frac{1}{n} \sum_{j=1}^{n} \ln \left(\mathbb{P}_{Y_{j}}\left(Y_{j}\right)\right) \rightarrow-\mathbb{E}\left[\ln \left(\mathbb{P}_{Y_{1}}\left(Y_{1}\right)\right)\right]=H\left(Y_{1}\right) \\
&-\frac{1}{n} \sum_{j=1}^{n} \ln \left(\mathbb{P}_{X_{j}, Y_{j}}\left(X_{j}, Y_{j}\right)\right) \rightarrow-\mathbb{E}\left[\ln \left(\mathbb{P}_{X_{1}, Y_{1}}\left(X_{1}, Y_{1}\right)\right)\right]=H\left(X_{1}, Y_{1}\right)
\end{aligned}
$$

Since the strong implies the weak law of large numbers, we have an immediate consequence for the probability of F_{δ}^{n}.
3.1.10 Corollary. Let $\epsilon>0$. By choosing n sufficiently large, we can achieve $\mathbb{P}\left(F_{\delta}^{n}\right)>1-\epsilon$
3.1.11 Theorem (Shannon-McMillan for channels). Given a discrete memoryless source $\left\{X_{j}\right\}_{j=1}^{\infty}$, and a discrete memoryless channel $\gamma: \mathbb{A} \times \Omega \rightarrow \mathbb{B}, \ln \left(\mathbb{P}_{X_{1}}\left(X_{1}\right)\right), \ln \left(\mathbb{P}_{Y_{1}}\left(Y_{1}\right)\right)$ and $\ln \left(\mathbb{P}_{X_{1}, Y_{1}}\left(X_{1}, Y_{1}\right)\right)$ integrable, and $\delta>0$, then for all sufficiently large n, F_{δ}^{n} satisfies

1. $\mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(\left(F_{\delta}^{n}\right)^{c}\right)<\delta$
2. $(1-\delta) \exp (n(H(X, Y)-\delta))<\left|F_{\delta}^{n}\right|$
3. $\left|F_{\delta}^{n}\right|<\exp (n(H(X, Y)+\delta))$
4. If $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}$, then

$$
\exp (-n(H(X, Y)+\delta))<\mathbb{P}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)<\exp (-n(H(X, Y)-\delta))
$$

Proof. 1. By the preceding corollary.
2. To prove the second assertion, use the above to get

$$
1-\delta<\mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(F_{\delta}^{n}\right)=\sum_{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}} \mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

By the definition of a jointly typical sequence, if $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}$, then

$$
-\frac{1}{n} \mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)>H\left(X_{1}, Y_{1}\right)-\delta
$$

so, by exponentiating,

$$
\begin{aligned}
1-\delta & <\sum_{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}} \mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \\
& <\sum_{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}} e^{-n\left(H\left(X_{1}, Y_{1}\right)-\delta\right)} \\
& =\left|F_{\delta}^{n}\right| e^{-n\left(H\left(X_{1}, Y_{1}\right)-\delta\right)}
\end{aligned}
$$

and hence $(1-\delta) \exp (n(H(X, Y)-\delta))<\left|F_{\delta}^{n}\right|$.
3. By the definition of a jointly typical sequence, if $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}$, then

$$
-\frac{1}{n} \mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)<H\left(X_{1}, Y_{1}\right)+\delta
$$

so, by exponentiating,

$$
\begin{aligned}
1 & \geq \sum_{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}} \mathbb{P}_{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \\
& >\sum_{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in F_{\delta}^{n}} e^{-n\left(H\left(X_{1}, Y_{1}\right)+\delta\right)} \\
& =\left|F_{\delta}^{n}\right| e^{-n\left(H\left(X_{1}, Y_{1}\right)+\delta\right)}
\end{aligned}
$$

and thus $\left|F_{\delta}^{n}\right|<\exp (n(H(X, Y)+\delta))$.
4. The last assertion follows directly from the definition of a jointly typical sequence, and was used in proving both parts of the second assertion.
3.1.12 Question. What is the transmission rate of a channel?
3.1.13 Definition (capacity). Given a discrete memoryless channel γ with transition probabilities $\{\mathbb{W}(\bullet \mid a)\}_{a \in \mathbb{A}}$, then we define the capacity of γ to be $C=\max _{\mathbb{P}_{X}} I(X ; Y)$ where $Y=\gamma(X)$.
3.1.14 Theorem (Channel coding). Consider a discrete memoryless channel $\gamma: \mathbb{A} \times \Omega \rightarrow \mathbb{B}$, and $C=\max _{\mathbb{P}_{X}} I(X ; Y)$ with $Y=\gamma(X)$. Let $\epsilon>0,4 \epsilon>\tau>0$. Then there is a sequence of $\left(n, m_{n}\right)$ fixed-length transmission codes $\left(\mathcal{C}_{n}, \phi_{n}, \psi_{n}\right)$ such that for sufficiently large $n, \frac{1}{n} \ln m_{n}>$ $C-\tau$ and the averaged error probability $P_{e}\left(\psi_{n} \circ \gamma \circ \phi_{n} \neq i d\right)<\epsilon$.
Proof. For this proof, we will abbreviate $\left(X_{1}, \ldots, X_{n}\right)$ as $X^{\otimes n},\left(Y_{1}, \ldots, Y_{n}\right)$ as $Y^{\otimes n}$, and $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$ as $(X, Y)^{\otimes n}$. By choosing N_{0} appropriately, we have $\left\{m_{n}\right\}$ integers with $C-\tau<\frac{1}{n} \ln m_{n} \leq C-\frac{\tau}{2}$. Let $\delta=\frac{\tau}{8}$. Choose \mathbb{P}_{X} which achieves the capacity, let \mathbb{Q}_{Y} be the corresponding output distribution, i.e. $\mathbb{Q}_{Y}(b)=\sum_{a \in \mathbb{A}} \mathbb{P}_{X}(a) \mathbb{W}(b \mid a)$. We demonstrate the existence of a code sequence in 3 steps.

Step 1: Select m_{n} input sequences $\left\{c_{j}\right\}_{j=1}^{m_{n}}$ of length n from \mathbb{A} randomly, according to $\mathbb{P}_{X \otimes n}$. Note that duplicates are possible. Identify $\mathcal{C}_{n}=\left\{1,2, \ldots, m_{n}\right\}$ with codes sequences $\phi_{n}(j)=c_{j}$ and choose

$$
\psi_{n}(y)=\left\{\begin{array}{cc}
j & \text { if } \phi(j)=c_{j},\left(c_{j}, y\right) \in F_{\delta}^{n}, \text { and } \nexists\left(c^{\prime}, y\right) \in F_{\delta}^{n} \text { with } c^{\prime} \neq c_{j} \\
\text { arbitrary } & \text { otherwise }
\end{array}\right.
$$

Step 2: We estimate the averaged error probability for the randomly generated code. Let $\Lambda\left(c_{m}\right)$ be the probability of having a decoding error given fixed input sequence c_{m}. The error could come from $\left(c_{m}, y\right) \notin F_{\delta}^{n}$ (not being typical) or from multiple source symbols mapped to y within F_{δ}^{n}. We have

$$
\Lambda\left(c_{m}\right) \leq \sum_{\substack{y \in \mathbb{B}^{n} \\\left(c_{m}, y\right) \notin F_{\delta}^{n}}} \mathbb{W}\left(y \mid c_{m}\right)+\sum_{m^{\prime} \neq m} \sum_{\substack{y \in \mathbb{B}^{n} \\\left(c_{m^{\prime}}, y\right) \in F_{\delta}^{n}}} \mathbb{W}\left(y \mid c_{m}\right)
$$

with the notation $y=\left(y_{1}, \ldots, y_{n}\right)$ with $\mathbb{W}\left(y \mid c_{m}\right)=\prod_{k=1}^{n} \mathbb{W}\left(y_{k} \mid\left(c_{m}\right)_{k}\right)$.
If we average with respect to the choice of codewords, governed by $\mathbb{P}_{X^{\otimes n}}$, then we obtain the expected error probability.

$$
\begin{aligned}
& \mathbb{E}_{X^{\otimes n}}\left[\Lambda\left(c_{m}\right)\right]=\sum_{a \in \mathbb{A}^{n}} \mathbb{P}_{X^{\otimes n}}(a) \Lambda(a) \\
& \leq \sum_{a \in \mathbb{A}^{n}}\left(\sum_{\substack{y \in \mathbb{B}^{n} \\
(a, y) \notin F_{\delta}^{n}}} \mathbb{P}_{X^{\otimes n}}(a) \mathbb{W}(y \mid a)+\sum_{m^{\prime} \neq m} \sum_{\substack{y \in \mathbb{B}^{n} \\
\left(c_{m^{\prime}}, y\right) \in F_{\delta}^{n}}} \mathbb{P}_{X^{\otimes n}}(a) \mathbb{W}(y \mid a)\right) \\
& =\mathbb{P}_{(X, Y)^{\otimes n}}\left(\left(F_{\delta}^{n}\right)^{c}\right)+\sum_{a \in \mathbb{A}^{n}} \sum_{m^{\prime} \neq m} \sum_{\substack{y \in \mathbb{B}^{n} \\
\left(c_{m^{\prime}}, y\right) \in F_{\delta}^{n}}} \mathbb{P}_{X^{\otimes n}, Y^{\otimes n}}(a, y) \\
& =\mathbb{P}_{(X, Y)^{\otimes n}}\left(\left(F_{\delta}^{n}\right)^{c}\right)+\sum_{m^{\prime} \neq m} \sum_{\substack{y \in \mathbb{B}^{n} \\
\left(c_{m^{\prime}}, y\right) \in F_{\delta}^{n}}} \mathbb{P}_{Y^{\otimes n}}(y)
\end{aligned}
$$

To be continued...

