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Warm Up: Binary erasure channel(BEC)

With Y = v(X) and P(A) = ¢
Last time we had observed

Maximality of H(Y") implies, by the fixed probability Py (A) = ¢, a uniform distribution on

the other two outcomes, .
— €
Py (0) =Py (1) = 5 -

We conclude the capacity is:
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Binary Symmetric Channel

To compute capacity, we compute
I(X;Y)=H(Y)-HY|X)
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=H(Y) — h(e)

To achieve the max of I(X;Y’) we need to maximize H(Y'). Entropy is maximized if Py (0) =
Px(1) = 3, H(Y) = In2 Hence, in this case, we transmit at a rate of R = In2 — h(e).

When ¢ = 0 we transmit as expected at a rate of In 2, corresponding to one bit per channel
use, but the same holds if ¢ = 1, because then the output only has to be inverted to get the
input message. Finally, when ¢ = 1/2, the transmission rate is 0 because the channel output is
independent of the input.

In order to derive a (weak) converse to the channel coding theorem we use the following
lemma.

3.1.16 Lemma (Fano). Let S,Y be random variables with the finite alphabet A, and
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Then,
HS|)Y)<HE)+H(SIE,)Y)+P(S#Y)In|A| -1

Proof. Express H(E, S|Y') in two ways using additivity

H(E,S|Y) = H(S|Y) + H(E|S,Y) — H(E|Y) + H(S|E,Y)
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=0because Sand Y determine E

We estimate:

H(S|Y) < H(E) + H(S|E,Y)



Also, consider

H(S|E,Y) = Pg(0) ] (S|Y E=0)+ Pp H(SY.E=1
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Then, collecting terms we get:

H(S|Y) < H(E)+P(S #Y)In(|A| — 1)

Next, we state a (weak) converse to the channel coding theorem.

3.1.17 Theorem. Lety be a discrete memoryless channel with conditional probabilities {W (b|a)}, a €

A and {C,, ¢n, 1} a transmission code sequence with the same size m,, = |C,|. If,
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Then, the averaged error prbability P, can be bounded away from zero for all sufficiently large n.
Proof. Without loss of generality, let C,, = {1,2,...,m,}, ¢, : C, — A". Assuming equally

probable inputs, we have a uniform distribution Q on C,, with H(Q) = Inm,,. Let S be a random
variable with values C,, distributed according to Q. Then, we have {S, X = ®(S5),Y} forming a

Markov chain, because
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and X is a deterministic function of S. Now, by the data processing inequality for Markov chains,
1(S;Y) < I(X;Y)
and comparing with a discrete memoryless source as input

I(X;Y)< max I(X;Y)
Px,Y=v(X)
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Now, defining any ¢,, : B™ — {1,2,...,m,} we have for

E:{ L yn(Y) #

0, else

that

Inm, =H(S)
ETH(SY) 4 1(5:Y)

Markov

# H(S|Y)+I1(X;Y)
Next, using Fano's inequality
Inm, = H(S)
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Solving for P, gives

Inm, —nC —1In2
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So,
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If liminfn%oo%hlmn > (' then thereisa 0 > 0 and N € N such that for all n > N,
%lnmn >C+90
Assuming that N is such that n > N and 1“72 < g, then
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Wolfowitz shows that one can even prove P, — 1, see also Ahlswede’s proof, but this requires
a different type of typicality which we will not pursue here.



