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Warm Up: Binary erasure channel(BEC)

With Y = γ(X) and P(∆) = �

Last time we had observed

C = max
Y

I(X = 0;Y ) = max
Y

I(X = 1;Y )

= max
X,Y

I(X;Y )

= max
X,Y

(H(Y )−H(Y |X))

= max
Y

�
H(Y )−

1�

i=0

PX(i)H(Y |X = i)

�

= max
Y

(H(Y )− h(�))

H(X|Y ) H(Y )

Maximality of H(Y ) implies, by the fixed probability PY (∆) = �, a uniform distribution on

the other two outcomes,

PY (0) = PY (1) =
1− �

2
.

We conclude the capacity is:

C = −1
1

2
(1− �) ln

2− 1

2
− � ln �+ (1− �) ln(1− �)

= −(1− �) ln
1

2
= (1− �) ln 2
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Binary Symmetric Channel
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To compute capacity, we compute

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
1�

i=0

PX(i)H(Y |X = i)

= H(Y )− h(�)

To achieve the max of I(X;Y ) we need to maximize H(Y ). Entropy is maximized if PY (0) =
PX(1) =

1
2 , H(Y ) = ln 2 Hence, in this case, we transmit at a rate of R = ln 2− h(�).

When � = 0 we transmit as expected at a rate of ln 2, corresponding to one bit per channel

use, but the same holds if � = 1, because then the output only has to be inverted to get the

input message. Finally, when � = 1/2, the transmission rate is 0 because the channel output is

independent of the input.

In order to derive a (weak) converse to the channel coding theorem we use the following

lemma.

3.1.16 Lemma (Fano). Let S, Y be random variables with the finite alphabet A, and

E =

�
0, S = Y

1, S �= Y

Then,
H(S|Y ) ≤ H(E) +H(S|E, Y ) + P(S �= Y ) ln |A|− 1

Proof. Express H(E, S|Y ) in two ways using additivity

H(E, S|Y ) = H(S|Y ) + H(E|S, Y )� �� �
=0because S andY determineE

= H(E|Y ) +H(S|E, Y )

We estimate:

H(S|Y ) ≤ H(E) +H(S|E, Y )
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Also, consider

H(S|E, Y ) = PE(0)H(S|Y,E = 0)� �� �
=0

+ PE����
P(S �=Y )

H(S|Y,E = 1� �� �
≤ln(|A|−1)

≤ P(S �= Y ) ln(|A|− 1)

Then, collecting terms we get:

H(S|Y ) ≤ H(E) + P(S �= Y ) ln(|A|− 1)

Next, we state a (weak) converse to the channel coding theorem.

3.1.17 Theorem. Let γ be a discrete memoryless channel with conditional probabilities {W(b|a)}, a ∈
∆ and {Cn,φn,ψn} a transmission code sequence with the same size mn = |Cn|. If,

lim
n→∞

inf
1

n
lnmn > C

Then, the averaged error prbability Pe can be bounded away from zero for all sufficiently large n.

Proof. Without loss of generality, let Cn = {1, 2, . . . ,mn}, Φn : Cn → An
. Assuming equally

probable inputs, we have a uniform distribution Q on Cn with H(Q) = lnmn. Let S be a random

variable with values Cm distributed according to Q. Then, we have {S,X = Φ(S), Y } forming a

Markov chain, because

P(Y = b) =
1

mn

�

x∈Cn

W(b|Φn(x))

=
�

a∈An

|Φ−1(a)|
mn

W(b|a)

and X is a deterministic function of S. Now, by the data processing inequality for Markov chains,

I(S;Y ) ≤ I(X;Y )

and comparing with a discrete memoryless source as input

I(X;Y ) ≤ max
PX ,Y=γ(X)

I(X;Y )

= max
PX ,Y=γ(X)

n�

j=1

I(Xj;Yj)

≤ max
PX ,Yj=γ(Xj)

n�

j=1

I(Xj;Yj)� �� �
≤C

≤ nC

3



Now, defining any φn : Bn → {1, 2, . . . ,mn} we have for

E =

�
1, ψn(Y ) �= S

0, else

that

lnmn =H(S)
additivity

= H(S|Y ) + I(S;Y )
Markov

�= H(S|Y ) + I(X;Y )

Next, using Fano’s inequality

lnmn = H(S)

≤ H(E) + P(E = 1) ln(|Cn|− 1) + nC

≤ ln 2 + P(E = 1)� �� �
Pe

ln(mn − 1) + nC

Solving for Pe gives

Pe ≥
lnmn − nC − ln 2

ln(mn − 1)

≥ lnmn − nC − ln 2

lnmn

So,

Pe ≥ 1− C

1
n lnmn

− ln 2

lnmn

If lim infn→∞
1
n lnmn > C then there is a δ > 0 and N ∈ N such that for all n > N ,

1
n lnmn > C + δ

Assuming that N is such that n > N and
ln 2
n <

δ
2 , then

Pe ≥ 1− C

C + δ� �� �
δ

C+δ

− ln 2

n(C + δ)� �� �
δ

2(C+δ)

≥ δ

2(C + δ)

> 0

Wolfowitz shows that one can even prove Pe → 1, see also Ahlswede’s proof, but this requires

a different type of typicality which we will not pursue here.
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