Information Theory with Applications, Math6397 Lecture Notes from October 14, 2014

taken by Sabrine Assi

4 Rate Distortion Theory

4.1 Distortion measures

4.1.1 Problem. Given a DMS $\{X_j\}_{j=1}^{\infty}$ with $H(X_1)$ is greater than the channel capacity C, can we control the transmission quality?

Strategy: Insert a lossy compression map $x_j \to \hat{x}_j$ so that $H(\hat{x}_j) < C$ so that the transmission is perfect with overwhelming probability ,so errors are intentional to reduce the amount of data

4.1.2 Definition. A distortion measure of a map (a cost function)

 $\alpha: \mathbb{A} \times \hat{\mathbb{A}} \to \mathbb{R}$, where \mathbb{A} is the alphabet of the sequence of the source, \hat{A} is the reproduction alphabet. Often $\hat{\mathbb{A}} \subset \mathbb{A}$ as part a data reduction strategy.

4.1.3 Example. Assuming measure Q is uniform on $\mathbb{A}=\{1,2,3,4\}$, we want to find $\hat{\mathbb{A}} \subset \mathbb{A}$, $|\hat{A}| = 2$ and

$$\mathsf{d}(\mathsf{i},\mathsf{j}) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i, j \in \{1,2\} \text{ } or, i, j \in \{3,4\} \\ 2 & \text{if } else \end{cases}$$

what map $\mathbf{x} \to \hat{x}$ minimizes $\mathbb{E}\left[d\left(x, \hat{x}\right)\right]$?

If we choose $\hat{\mathbb{A}}=\!\{1,3\}$ and let

$$\hat{x} = \begin{cases} 1 & \text{if } x \in \{1, 2\} \\ 3 & \text{if } x \in \{3, 4\} \end{cases}$$

H(X)=ln 4
 $H(\hat{X}) = \ln 2 \text{ and}$
 $\mathbb{E}[d(x, \hat{x})] = 1/2$

This grouping strategy gives minimum expected distortion because any other partition would give at least one case where $d(x, \hat{x})=2$ and thus

 $\mathbb{P} = \left[d\left(x, \hat{x}\right) = 2 \right] \geq 1/4 \text{ giving } \mathbb{E} \left[d\left(x, \hat{x}\right) \right] > 1/2.$

Several distortion measures are common.

4.1.4 Definition. The hamming distortion is given by $\mathbb{A} = \hat{\mathbb{A}}$ and

$$d(x, \hat{x}) = \begin{cases} 0 & \text{if } x = \hat{x} \\ 1 & \text{if } else \end{cases}$$

 $\mathbb{E}\left[d\left(X,\hat{X}\right)\right] = \mathbb{P}\left(X \neq \hat{X}\right) \text{ .If } \mathbb{A}, \ \hat{\mathbb{A}} \subset \mathbb{R}, \text{then the square error distortion is}$ $d\left(x,\hat{x}\right) = |x - \hat{x}|^2$

then the expected distortion is the mean squared error.

4.1.5 Definition. Given sequences $x = \{x_1, x_2, \dots, x_n\}$ with values in \mathbb{A} and $\hat{x} = \{\hat{x_1}, \hat{x_2}, \dots, \hat{x_n}\}$ with values in $\hat{\mathbb{A}}$,then the additive distortion is $d_n(x, \hat{x}) = \sum_{j=1}^n d(x_j, \hat{x_j})$ and the maximum distortion is $d_n\left(x,\hat{x}\right) = \max_i d\left(x_i,\hat{x_i}\right)$

4.1.6 Question. what is the best possible compression rate given allowable (expected) distortion?

4.1.7 Definition. \mathbb{A}_n (n,m,D) fixed length lossy compression code for a source $\{x_j\}_{j=1}^{\infty}$ with alphabet \mathbb{A} and a distortion measure d_n is given by a map

$$\phi: \mathbb{A}^n \to \hat{\mathbb{A}}$$

$$\begin{split} |\phi\left(\mathbb{A}^{n}\right)| &= m \text{ and } \mathbb{E}\left[\frac{1}{n}d_{n}\left(x,\hat{x}\right)\right] \leq D\\ \text{Remark:The size of } \phi\left(\mathbb{A}^{n}\right) \text{ is m, so } H\left(\phi\left(x_{1},x_{2},...,x_{n}\right)\right) \leq \ln m \text{ and the coding rate needed is } \end{split}$$
at most $\frac{1}{n} \ln m$

4.1.8 Definition. For a sequence of distortion measures $\{d_n\}_{n=1}^{\infty}$ a source $\{x_j\}_{j=1}^{\infty}$ with alphabet A .The rate-distortion pair(R,D) is achievable if there exists a sequence fixed-length (n, m_n, D) code with $\limsup \frac{1}{n} \ln m_n \leq R$. The rate -distortion function is $\mathsf{R}(\mathsf{D}) = \inf \{R' \in \mathbb{R} : (R', D) \text{ achievable}\}$ Remark:Motivated by the proofs of the following theorems, we also consider the random maps $\phi: \mathbb{A}^n * \Omega \to \mathbb{A}^n$ especially the case of ϕ being a discrete memoryless channel.

4.1.9 Definition. Let $d : \mathbb{A} \times \hat{\mathbb{A}} \to \mathbb{R}$ be integrable with respect to measure induced by X_j and $\hat{X}_j = \phi(x_j)$, where ϕ is a discrete memoryless channel and let d_n be additive distortion , then we define the distortion typical set

$$\mathcal{D}^{n}_{\delta} = \{(a, \hat{a}) \in \mathbb{A} \times \hat{\mathbb{A}}^{n} : \left| \frac{1}{n} \ln \mathbb{P}_{X}(a) + H(X_{1}) \right| \leq \delta,$$
$$\left| \frac{1}{n} \ln \mathbb{P}_{\hat{X}(\hat{a})} + H(\hat{X}_{1}) \right| < \delta,$$

$$\left|\frac{1}{n}\ln\mathbb{P}_{(X,\hat{X})(a,\hat{a})} + H(X,\hat{X}_{1})\right| < \delta,$$
$$\left|\frac{1}{n}d_{n}(a,\hat{a}) - \mathbb{E}[d(X_{1},\hat{X}_{1})]\right| < \delta\}.$$