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Last time

If 1
n lnmn ≤ ρ(D) + τ < ρ(D) + 4�, then we could show the existence of a code such that

E[ 1
n
dn(X;φn(x))] ≤ D + �

So
R(D + �) ≤ ρ(D) + 4�

For the lower bound, we had derived

ρ(
1

n
E[dn(X;φn(X))]) ≤ 1

n
lnmn (1)

By the assumption limn→∞ sup 1
n lnmn, for all sufficient large n, there exists τ > 0 such that

1

n
lnmn < ρ(D)− τ (2)

Combined with (1), thus

ρ(
1

n
E[dn(X;φn(X))]

� �� �
D�

) < ρ(D)− τ

Recall properties of ρ

• ρ(D) = 0 for all D ≥ D0

• ρ is convex

• ρ is decreasing by definition

This implies that ρ is continuous and strictly decreasing. Because of this, D�
> D, so there

is � > 0 such that for all sufficiently large n

1

n
E[dn(X;φn(X))] > D + �

We have thus shown that achieving the rate ρ(D) requires an expected distortion of at least
D + �, meaning ρ(D) ≤ R(D + �).
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5 Source and channels with continuous alphabets

5.1 Differential entropy

Recall: For source X : Ω → A, with discrete alphabet, the entropy

H(X) = −
�

a∈A

P(x = a) lnP(x = a)

is the minimum average code length for lossless source coding

5.1.1 Question. What about the entropy of sources with continuous alphabet X : Ω → R?
5.1.2 Example. X : Ω → [0, 1), which induces uniform probability measure on Borel sets, char-
acterized by P(a ≤ X ≤ b) = b− a ,for all 0 ≤ a < b ≤ 1.
Approximate X by Ym = j

m if j−1
m ≤ X <

j
m , with 1 ≤ j ≤ m

So Ym = fm(X) where fm is a step function approximation of the identity X.
Sketch:

Figure 1: Maximum quantization error: Errmax = 1
m

We have that the measure induced by Ym is uniform on { 1
m ,

2
m , ......, 1}, so

H(Ym) = −
m�

j=1

1

m
ln

1

m
= lnm

m→∞−−−→ ∞

So this means as Ym
m→∞−−−→ X,H(Ym) → ∞
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5.1.3 Definition. The differential entropy of a random variable with values in R, inducing a
measure p which is absolute continuous with respect to the Lebesgue measure, so d(p(x)) =
p(x)dx is:

h(X) =
�

R
p(x) ln p(x)dx, if p(x) ln p(x) is integrable

5.1.4 Example.

• p(X) = 1, 0 ≤ X ≤ 1, then

h(X) = 0

• p(X) = 2X, 0 ≤ X ≤ 1 then

h(X) = −
1�

x=0

2x ln 2xdx = −1

2
ln 2 < 0

5.1.5 Question. Is there a relation between h(X) and entropies of approximation r.v
�
s (Ym) ?

In the second of our previous example: Ym = j
m ,if j−1

m ≤ X <
j
m

then P(Ym = j
m) =

j
m�

X= j−1
m

2xdx = 2j−1
m2 , for 1 ≤ j ≤ m// and the entropy of Ym is

H(Ym) = −
m�

j=1

2j − 1

m2
ln

2j − 1

m2

= −
m�

j=1

1

m
(
2j − 1

m
(ln

2j − 1

m
+ ln

1

m
))

= −
m�

j=1

1

m
(
2j − 1

m
ln

2j − 1

m
)

� �� �
m→∞−−−→−

� 1
x=0 2x ln 2xdx

+ lnm

Message: Apart from trivial divergence (lnm), H(Ym) contains a part that converges to h(X).
This is meaningful when comparing entropies for Ym, Y

�
m belonging to two random variables X,X

�

with fixed m because the lnm term is then the same for both.

5.1.6 Example. Differential entropy of a normal (gaussian) r.v. X with

p(x) =
1√
2πσ2

e
− 1

2σ2 (x−µ)2
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with expected value µ and variance σ
2,

h(X) =

�

R

p(x)(
1

2
ln(2πσ2) +

1

2σ2
(x− µ)2)dx

=
1

2
ln(2πσ2) +

1

2σ2
E[(x− µ)2]� �� �

σ2

=
1

2
ln(2πσ2) +

1

2

=
1

2
ln(2πeσ2)

In fact, if X has an expected value and a finite second moment and variance is fixed at E[(X −
µ)2] = σ

2, then this is the largest differential entropy possible.

5.1.7 Theorem. Given a r.v. X with density p and mean µ. Let q be the density of a gaussian
source Y with µ = E[X] = E[Y ] and E[(X−µ)2] = E[(Y −µ)2] = σ

2
< ∞. Then h(Y ) ≥ h(X).

Proof. Note since:

�

R

p(x) ln q(x)dx =

�

R

p(x)(
1

2
ln(2πσ2) +

1

2σ2
(x− µ)2)dx

=

�

R

q(x)(
1

2
ln(2πσ2) +

1

2σ2
(x− µ)2)dx

=

�

R

q(x) ln q(x)dx

Because
�

R
q(x)dx =

�

R
p(x)dx = 1 and E[(X − µ)2] = E[(Y − µ)2] = σ

2, changing from p(x)

to q(x) does not affect the result of integral. Next,

h(Y )− h(X) = −
�

R

q(x)����
p(x)

ln q(x)dx+

�

R

p(x) ln p(x)dx

= −
�

R

p(x)(ln q(x)− ln p(x))dx

With − ln q(x)
p(x) ≥ 1− q(x)

p(x)

h(Y )− h(X) ≥
�

R

p(x)(1− q(x)

p(x)
)dx = 1− 1 = 0
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5.2 A closer look at the meaning of differential entropy

5.2.1 Lemma. Let X be a r.v. with density p on R and p ln p be Riemann Integrable which
means

inf
f∈C(R)
f≥p

�
fdx = sup

f∈C(R)
f≤p

�
fdx

Then, rounding X with stepsize ∆ = 2−n
, n ∈ N, yields an entropy for X∆ = �X

∆�∆ which

satisfies H(X∆)− ln(2n) = H(X∆)− n ln 2
n→∞−−−→ h(X)

Proof. Without loss of generality, assume p is continuous, bounded and compact support. Let
tj = j∆,∆ = 2−n

, j ∈ Z. Choose xj = [tj−1, tj] by the mean value theorem for integration s.th.

� tj

tj−1

p(x)dx = p(xj)(tj − tj−1) = p(xj)(tj − tj−1) = ∆p(xj) .

Now define the Riemann sum

h
∆(X) ≡

∞�

j=−∞

∆p(xj)� �� �
probwith∆

ln p(xj)� �� �
one-point

then the Riemann integral is obtained as the limit

h
∆(X)

∆→0−−−→ h(X)

This means for � > 0 there is N s.th. for all n > N ,

|h(X)− h
∆(X)| < �

Compare this with

H(X∆) = −
∞�

j=−∞

Pj lnPj = −
∞�

j=−∞

(p(xj)∆) ln(p(xj)∆)

therefore

H(X∆)− h
∆(X) = −

∞�

j=−∞

p(xj)∆ ln ∆����
1
2n

= n ln 2

By the convergence of h∆,

H(X∆)− n ln 2 = h
∆(X)

∆→0−−−→ h(X)
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