Information Theory with Applications, Math6397 Lecture Notes from October 23, 2014

taken by Tianxiao Jiang

Last time

If $\frac{1}{n} \ln m_n \leq \rho(D) + \tau < \rho(D) + 4\epsilon$, then we could show the existence of a code such that

$$\mathbb{E}\left[\frac{1}{n}d_n(X;\phi_n(x))\right] \le D + \epsilon$$

So

$$R(D+\epsilon) \le \rho(D) + 4\epsilon$$

For the lower bound, we had derived

$$\rho(\frac{1}{n}\mathbb{E}[d_n(X;\phi_n(X))]) \le \frac{1}{n}\ln m_n \tag{1}$$

By the assumption $\lim_{n\to\infty} \sup \frac{1}{n} \ln m_n$, for all sufficient large n, there exists $\tau > 0$ such that

$$\frac{1}{n}\ln m_n < \rho(D) - \tau \tag{2}$$

Combined with (1), thus

$$\rho(\underbrace{\frac{1}{n}\mathbb{E}[d_n(X;\phi_n(X))]}_{D'}) < \rho(D) - \tau$$

Recall properties of ρ

- $\rho(D) = 0$ for all $D \ge D_0$
- ρ is convex
- ρ is decreasing by definition

This implies that ρ is continuous and strictly decreasing. Because of this, D' > D, so there is $\epsilon > 0$ such that for all sufficiently large n

$$\frac{1}{n}\mathbb{E}[d_n(X;\phi_n(X))] > D + \epsilon$$

We have thus shown that achieving the rate $\rho(D)$ requires an expected distortion of at least $D + \epsilon$, meaning $\rho(D) \leq R(D + \epsilon)$.

5 Source and channels with continuous alphabets

5.1 Differential entropy

Recall: For source $X : \Omega \to \mathbb{A}$, with discrete alphabet, the entropy

$$H(X) = -\sum_{a \in \mathbb{A}} \mathbb{P}(x=a) \ln \mathbb{P}(x=a)$$

is the minimum average code length for lossless source coding

5.1.1 Question. What about the entropy of sources with continuous alphabet $X : \Omega \to \mathbb{R}$? 5.1.2 Example. $X : \Omega \to [0, 1)$, which induces uniform probability measure on Borel sets, characterized by $\mathbb{P}(a \le X \le b) = b - a$, for all $0 \le a < b \le 1$. Approximate X by $Y_m = \frac{j}{m}$ if $\frac{j-1}{m} \le X < \frac{j}{m}$, with $1 \le j \le m$ So $Y_m = f_m(X)$ where f_m is a step function approximation of the identity X. Sketch:

Figure 1: Maximum quantization error: $Err_{max} = \frac{1}{m}$

We have that the measure induced by Y_m is uniform on $\{\frac{1}{m}, \frac{2}{m}, \dots, 1\}$, so

$$H(Y_m) = -\sum_{j=1}^m \frac{1}{m} \ln \frac{1}{m} = \ln m \xrightarrow{m \to \infty} \infty$$

So this means as $Y_m \xrightarrow{m \to \infty} X, H(Y_m) \to \infty$

5.1.3 Definition. The **differential entropy** of a random variable with values in \mathbb{R} , inducing a measure p which is absolute continuous with respect to the *Lebesgue* measure, so d(p(x)) = p(x)dx is:

$$h(X) = \int\limits_{\mathbb{R}} p(x) \ln p(x) dx$$
 , if $p(x) \ln p(x)$ is integrable

5.1.4 Example.

• $p(X) = 1, 0 \le X \le 1$, then

$$h(X) = 0$$

• p(X) = 2X, $0 \le X \le 1$ then

$$h(X) = -\int_{x=0}^{1} 2x \ln 2x dx = -\frac{1}{2} \ln 2 < 0$$

5.1.5 Question. Is there a relation between h(X) and entropies of approximation $r.v's(Y_m)$?

In the second of our previous example: $Y_m = \frac{j}{m}$, if $\frac{j-1}{m} \leq X < \frac{j}{m}$ then $\mathbb{P}(Y_m = \frac{j}{m}) = \int_{X=\frac{j-1}{m}}^{\frac{j}{m}} 2x dx = \frac{2j-1}{m^2}$, for $1 \leq j \leq m//$ and the entropy of Y_m is $H(Y_m) = -\sum_{j=1}^{m} \frac{2j-1}{m^2} \ln \frac{2j-1}{m^2}$ $\sum_{m=1}^{m} \frac{1}{2} (2j-1) (1-2j-1) (1-2j-1)$

$$= -\sum_{j=1}^{m} \frac{1}{m} \left(\frac{2j-1}{m} \left(\ln \frac{2j-1}{m} + \ln \frac{1}{m} \right) \right)$$
$$= -\sum_{j=1}^{m} \frac{1}{m} \left(\frac{2j-1}{m} \ln \frac{2j-1}{m} \right) + \ln m$$
$$\underbrace{\xrightarrow{m \to \infty}{-\int_{x=0}^{1} 2x \ln 2x dx}}_{-\frac{m \to \infty}{-\int_{x=0}^{1} 2x \ln 2x dx}}$$

Message: Apart from trivial divergence $(\ln m)$, $H(Y_m)$ contains a part that converges to h(X). This is meaningful when comparing entropies for Y_m, Y'_m belonging to two random variables X, X' with fixed m because the $\ln m$ term is then the same for both.

5.1.6 Example. Differential entropy of a normal (gaussian) r.v. X with

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

with expected value μ and variance σ^2 ,

$$h(X) = \int_{\mathbb{R}} p(x) (\frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x-\mu)^2) dx$$

= $\frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2\sigma^2} \underbrace{\mathbb{E}[(x-\mu)^2]}_{\sigma^2}$
= $\frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2}$
= $\frac{1}{2} \ln(2\pi e\sigma^2)$

In fact, if X has an expected value and a finite second moment and variance is fixed at $\mathbb{E}[(X - \mu)^2] = \sigma^2$, then this is the largest differential entropy possible.

5.1.7 Theorem. Given a r.v. X with density p and mean μ . Let q be the density of a gaussian source Y with $\mu = \mathbb{E}[X] = \mathbb{E}[Y]$ and $\mathbb{E}[(X-\mu)^2] = \mathbb{E}[(Y-\mu)^2] = \sigma^2 < \infty$. Then $h(Y) \ge h(X)$.

Proof. Note since:

$$\begin{split} \int_{\mathbb{R}} p(x) \ln q(x) dx &= \int_{\mathbb{R}} p(x) \left(\frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x-\mu)^2\right) dx \\ &= \int_{\mathbb{R}} q(x) \left(\frac{1}{2} \ln(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x-\mu)^2\right) dx \\ &= \int_{\mathbb{R}} q(x) \ln q(x) dx \end{split}$$

Because $\int_{\mathbb{R}} q(x)dx = \int_{\mathbb{R}} p(x)dx = 1$ and $\mathbb{E}[(X - \mu)^2] = \mathbb{E}[(Y - \mu)^2] = \sigma^2$, changing from p(x) to q(x) does not affect the result of integral. Next,

$$h(Y) - h(X) = -\int_{\mathbb{R}} \underbrace{q(x)}_{p(x)} \ln q(x) dx + \int_{\mathbb{R}} p(x) \ln p(x) dx$$
$$= -\int_{\mathbb{R}} p(x) (\ln q(x) - \ln p(x)) dx$$

With $-\ln \frac{q(x)}{p(x)} \ge 1 - \frac{q(x)}{p(x)}$ $h(Y) - h(X) \ge \int_{\mathbb{R}} p(x)(1 - \frac{q(x)}{p(x)})dx = 1 - 1 = 0$

5.2 A closer look at the meaning of differential entropy

5.2.1 Lemma. Let X be a r.v. with density p on \mathbb{R} and $p \ln p$ be Riemann Integrable which means

$$\inf_{\substack{f \in C(\mathbb{R}) \\ f \ge p}} \int f dx = \sup_{\substack{f \in C(\mathbb{R}) \\ f \le p}} \int f dx$$

Then, rounding X with stepsize $\Delta = 2^{-n}, n \in \mathbb{N}$, yields an entropy for $X^{\Delta} = \lceil \frac{X}{\Delta} \rceil \Delta$ which satisfies $H(X^{\Delta}) - \ln(2^n) = H(X^{\Delta}) - n \ln 2 \xrightarrow{n \to \infty} h(X)$

Proof. Without loss of generality, assume p is continuous, bounded and compact support. Let $t_j = j\Delta, \Delta = 2^{-n}, j \in \mathbb{Z}$. Choose $x_j = [t_{j-1}, t_j]$ by the mean value theorem for integration *s.th.*

$$\int_{t_{j-1}}^{t_j} p(x)dx = p(x_j)(t_j - t_{j-1}) = p(x_j)(t_j - t_{j-1}) = \Delta p(x_j).$$

Now define the Riemann sum

$$h^{\Delta}(X) \equiv \sum_{j=-\infty}^{\infty} \underbrace{\Delta p(x_j)}_{probwith\Delta} \underbrace{\ln p(x_j)}_{\text{one-point}}$$

then the Riemann integral is obtained as the limit

$$h^{\Delta}(X) \xrightarrow{\Delta \to 0} h(X)$$

		L
		L

This means for $\epsilon > 0$ there is N s.th. for all n > N,

$$|h(X) - h^{\Delta}(X)| < \epsilon$$

Compare this with

$$H(X^{\Delta}) = -\sum_{j=-\infty}^{\infty} \mathbb{P}_j \ln \mathbb{P}_j \qquad \qquad = -\sum_{j=-\infty}^{\infty} (p(x_j)\Delta) \ln(p(x_j)\Delta)$$

therefore

$$H(X^{\Delta}) - h^{\Delta}(X) = -\sum_{j=-\infty}^{\infty} p(x_j) \Delta \ln \underbrace{\Delta}_{\frac{1}{2^n}} = n \ln 2$$

By the convergence of h^{Δ} ,

$$H(X^{\Delta}) - n \ln 2 = h^{\Delta}(X) \xrightarrow{\Delta \to 0} h(X)$$