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Last time

If LInm, < p(D)+ 7 < p(D) + 4e, then we could show the existence of a code such that

E[Ld,(X; du(0))] < D + ¢

n

So
R(D + €) < p(D) + 4e

For the lower bound, we had derived

PCELd(X; 6,(X))) < - Inm, (1)

By the assumption lim,, .., sup % Inm,,, for all sufficient large n, there exists 7 > 0 such that

%lnmn <p(D)—71 (2)

Combined with (1), thus
P Bl (X; 6, (X))]) < p(D) ~ 7
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-~
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Recall properties of p
e p(D) =0 forall D > D,

® p is convex
e p is decreasing by definition

This implies that p is continuous and strictly decreasing. Because of this, D’ > D, so there
is € > 0 such that for all sufficiently large n

%E[dn(X; on(X))] > D +e

We have thus shown that achieving the rate p(D) requires an expected distortion of at least
D + ¢, meaning p(D) < R(D +¢).



5 Source and channels with continuous alphabets

5.1 Differential entropy

Recall: For source X : Q2 — A, with discrete alphabet, the entropy

==Y Plr=a)lnP(z =a)

a€h

is the minimum average code length for lossless source coding

5.1.1 Question. What about the entropy of sources with continuous alphabet X : 2 — R?

5.1.2 Example. X : Q — [0,1), which induces uniform probability measure on Borel sets, char-
acterized by Pla < X <b)=b—a (forall 0 <a<b< 1

Approximate X by Y, = % ifj%1 <X < % with 1 < j<m

So Y, = fu(X) where f,, is a step function approximation of the identity X.

Sketch:

Figure 1: Maximum quantization error: Err,., = %

We have that the measure induced by Y, is uniform on {-, 2 1}, so
11 m—00
Z —In—=Inm —/— o0
= m T

So this means as Y,, — X, H(Y,,) — oo



5.1.3 Definition. The differential entropy of a random variable with values in R, inducing a
measure p which is absolute continuous with respect to the Lebesgue measure, so d(p(x))

p(x)dzx is:
[ p(z) Inp(z)dx, if p(z) Inp(z) is integrable

hX) =

5.1.4 Example.
e p(X)=1,0< X <1, then

e p(X)=2X,0< X <1 then

5.1.5 Question. |s there a relation between h(X) and entropies of approximation r.v's (Y,,) ?

1
2 In 2zxdx = —§ln2 <0

3 |m,

In the second of our previous example: Y,, = % Jif % <X <
J
[ 2xdr = 2fn—_21 for 1 < j < m// and the entropy of Y,, is

then P(Y,, = #)
X=I08
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Message: Apart from trivial divergence (Inm), H(Y,,) contains a part that converges to h(X).
This is meaningful when comparing entropies for Y,,,, Y./ belonging to two random variables X, X’
with fixed m because the Inm term is then the same for both.

5.1.6 Example. Differential entropy of a normal (gaussian) r.v. X with
L —shreny

Y



with expected value i and variance o2,

W) = [ o) (G n(2r0%) + 5 (0 = )
= %111(2%02) + % E[(z — u)?]
= %ln(27r02) + =
= %111(271‘60’2)

In fact, if X has an expected value and a finite second moment and variance is fixed at E[(X —
w)?] = o2, then this is the largest differential entropy possible.

5.1.7 Theorem. Given a r.v. X with density p and mean 1. Let q be the density of a gaussian
sourceY withp = E[X| = E[Y] and E[(X —p)?] = E[(Y —p)?] = 0 < 0o. Then h(Y) > h(X).

Proof. Note since:

A %L A

p(e) (5 In(2m0) + g — )}

[ po)matos

R

(@) W(2r0) + g (o — o))

q(z) Ing(z)dx

Because ]{q(aj)dx = %p(m)dm =1 and E[(X — p)?] = E[(Y — p)?] = o2, changing from p(z)

to g(x) does not affect the result of integral. Next,

MY)—h(X)=— /q\(ic_)/ln q(z)dx + /p(w) Inp(x)dx

R p(z) R
__ / p(z)(Ing(z) — Inp(z))dz

th — In 4) _ a(@)
With lnp(x)zl (@)

q(x), .
h(Y)—h(X)z/p(x)(l—M)dx—l 10



5.2 A closer look at the meaning of differential entropy

5.2.1 Lemma. Let X be a r.v. with density p on R and plnp be Riemann Integrable which
means

inf dxr = sup / dx
feC(R) f fEC(R) d
fzp f<p

Then, rounding X with stepsize A = 27" n € N, yields an entropy for X = [X]A which
satisfies H(X?) —1n(2") = H(X?) —nln2 == h(X)

Proof. Without loss of generality, assume p is continuous, bounded and compact support. Let
t; =JA,A=2""5¢€Z. Choose z; = [t;_1,t;] by the mean value theorem for integration s.th.

/tj p(x)dr = p(a;)(t; — tj—1) = p(x;)(t; — tj-1) = Ap(xy).

j—

Now define the Riemann sum

h(X) Z Ap(z;) Inp(x;)

J=Tee probwith/A one-point

then the Riemann integral is obtained as the limit

hA(X) 22% h(X)

This means for € > 0O there is N s.th. for all n > N,
|h(X) — hA(X)| <€

Compare this with

H(X?) =~ 'Z PjInP; = - 'Z (p(z;)A) In(p(z;)A)
therefore .
H(X®) -h3(X)=- ) pl;)Aln A =nln2

omn

By the convergence of h®,

A—0
—

H(X?) —nln2 = h*(X) h(X)



