Information Theory with Applications, Math6397
Lecture Notes from October 28, 2014

taken by Nicole Leonhard

Recall from last time we discussed:

e Continuous Entropy

e Differential Entropy

e Quantization/Rounding

e Gaussian Maximizers of Differential Entropy

Warm up:

5.1.6 Question. What number of bits is needed to store the decay line T of an atom with half
life A = 80 years at an accuracy A = 1073(years)?

5.1.7 Answer. Suppose you have an experiment with half life of 80 years. Now, suppose you want
to store decays at specific times. How large does your hard drive need to be to store the data?
For a discrete random variable, say T%, the rounded one, we know the expected number of bits
needed to store the outcomes is H, (TA). Note, we are using base 2. Last time we compared the
rounded entropy to the differential entropy for base 2 (binary) entropies. Repeating the argument
from last time gives us Hy (T2) & hy (T') — logy A.

Here, A\ ~ 2%0 so log, A = —10. Now, compute the differential entropy. For decay processes,
we have p () = ve™ " where v = decay constant and p (z) must integrate to one.

When \ = 80 years f080 ve tdt = 0.5. So, v = 0.0086. Thus,

80
H, (TA) ~ —/ ve " log, (76—%) dt — —10 = log, (S) )
0

Then, plugging in v, H (T*) = 18.29 bits.
Since delta is about 8 hours not much space needed. To make this relevant we would need a
sequence of Ts and look at the asymptotic behavior.



5.2 Properties of Differential Entropy

Now, we will look at properties of differential entropy. We adopt the notation of the discrete
case, but will use lower case letters. Also, when we talk about a joint distribution inducing a
measure with density associated with two, or more, random variable we are looking at the density
with respect to a product measure. Since we know the joint density is Lebesgue integrable with
respect to that product measure by looking at one variable and ignoring the other variables we
see that the densities of each random variable, marginals, also exist. However, since we don't
have guaranteed integrability of w (x,y) even with the natural log function we will need to add
"whenever the integral exists” to our statements.

5.2.8 Definition. Given two random variables X and Y with a continuous joint distribution with
density pxy on R? then the conditional differential entropy is given by

h(X]Y) = / Py (9) / w (zly) n w (z]y) dedy

where w (z]y) = 1”;;—&’9), whenever the integral exists.

5.2.9 Lemma. (Conditioning Decreases Entropy): Let X and Y be random variables inducing a
measure with a density pxy on R?, then h(X|Y) < h(X) and equality holds if and only if X
and Y are independent.

Proof. Since the density of the joint distribution, is assumed to be Lebesgue integrable py (y) =

prX,y (x,y) dz exists Lebesgue almost everywhere y € R? and in that case,
px,y (z,y)

w(zly) = Topy (wi)der is a probability density with py (v) w (z|y) = px.y (z,y).
Next,

h(X) — h(X|Y) = — / px (2) Inpy (z) dz + /

R N—— R
By inserting= Dxy (ZL’, y)

=pry (y)w(zly)a.e

— [ ) [wlelpx @ o+ [ v ) [ wlelp)nw ) dedy
= - /pr (v) /Rw (z|y) In (px (z) ) dxdy (Combining the integrals.)

w (2ly)

= —/py (y) / w (z]y) In (ZM> dzdy (Using the product of the marginal.)
R R pxy (%,9)

Py (v) / w (zly) nw (zly) dedy

= —/ pxy (z,y)In (M) dxdy (Replace with the joint density)
R2 pxy (T,9)

> —In </ pxy (2,y) JIMdmdy) (Jensen's Inequalitly, since -In is convex.)
R2 pxy (2,9)

=—Inl=0



In Jensen's inequality equality holds if and only if the inside of the function is constant on the

support of the function. Therefore, there is a ¢ € R? such that % = ¢ almost everywhere

on the support of pxy. Then, by normalization we see that pxy (x,y) = px (z) py (y) almost
everywhere. So, X and Y are independent. O

5.2.10 Lemma. (Additivity): Let X, ..., X,, be random variables with an induced measure on
R™ that has density px, .. x,, then

h(X1, o Xo) =Y h(X] X0, Xjo0)
j=1

and

h(X1, o Xa) <Y R(X5),
j=1

whenever the right hand side exists.

We will only address the case of two random variables, the n variable case follows by induction.

Proof. Let X; and X, be random variables. Then,

h (X1, X2) = —/ Pxi,Xx5 (331, 552) 1DPX1,X2 ($1, 5152) dxidzsy
R %/_/
’ =px, (z1)w(z2|z1)

—— [ pxi om0 s = [, o) s o (aafon)) d
R

RQ
N J/
-~

These can be thought of iterative integrals.

=h (X1) +h (X2|X1)

The inequality follows from the fact that conditioning decreases entropy. So, we have

]

So far we have looked at the properties that have been the same for the discrete and continuous
case, as long as the integrals exist. There are some properties differential entropy that differ from
the discrete case. For Differential Entropy you can get an idea of what should occur by looking
at the rounded variable. However, this is not always the case. In the discrete case, if you create
a one to one map to the values change but the probabilities don't. For differential entropy this
can't be done because the densities change. That is if f : A — B is one to one and A and B are
discrete alphabets then H (f (x)) = H (x). Now, we will examine an example of how differential
entropy acts differently.



5.2.11 Lemma. Leta # 0 and f : R — R, © — ax then for random variable X that induces
measure with density p h (f (z)) = h(z) + In|al.

Proof. The first thing we have to address is the density of f (x). The image measure under f
has density p; so that [ ps (y) dy = ff_l(B)p(yc) dx. Assume that a > 0 and change variables
by defining z = £. So, we have

/Epf (y) dy = /g c (IB%)p (%) d (%)
g_\,_/ %dy

yeB

s0, ps (y) = +p (¥) almost everywhere with respect to y. Thus,
B @) =~ [ o) lapy () dy
R
1 1
(By plugging in our defintion.) = — / —p (Q) In—p (Q) dy
ra \a/  a \a

<Change variables using z = %) =— /p(x) In @dw

2@ (1) [yt
—h(z)+1In(a).

—

In the case of a < 0, the proof follows similarly by using z = % m

lal

Notice, small values of a, which compresses, will have a negative contribution, thus yield
smaller entropy.

5.2.12 Corollary. If A : R" — R" is a linear and invertible, and random variablesX1, ..., X,
which induce a density on R", then h (AX) = h(X) + In|A|, where X is a vector of random
variables X1, ..., X,, and |A| is the Jacobian. On the other hand, if we transform by f (X) = X+C
then h (X + C) = h(X).

5.2.13 Corollary. If X and Y are random variables which induce a measure with density on R"
then h (X|Y) =h (X +Y]Y).

Proof. Let X and Y be random variables. Given a matrix in block form A = <I I) , where |

0 I
: : : : X\ [(X+Y
is the identity matrix, A <Y> = ( % ) Thus

h(X+YY)=-h(Y)+h(X+Y[Y)

e (s(1)

(By Cor. 52.12) = —h (V) + h(X,Y) +1n |A4|
——

detA=1

(By additivity.) = h (XY)



]

This map A can be thought of like a shearing operation, which is a measure preserving change
of coordinates.

5.3 Shannon-McMillan Asymptotic Equipartitioning for Continuous Sources

This will be similar to the Discrete Memoryless Source version covered previously. However, in the
Shannon-McMillan-Breiman Theorem for a Discrete Memoryless Source we had a bound on the
size of typical sets. With a Continuous Memoryless Source we don't have size. In this case since
everything is absolutely continuous with respect to the Lebesgue measure the size of a typical set
will be replaced with volume.

o)

5.3.14 Definition. A continuous memoryless source (CMS) {X;}7, is a sequence of identical
independent distribution random variables with values in R and X; induces a measure which is
absolutely continuous with respect to the Lebesgue measure.

Note, that the induced measure will have a probability density on R.



