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Last Time

• Relationship between differential entropy and entropy of quantized random variables

• Other properties of differential entropy

5 Sources and Channels With Continuous Alphabets, con-
tinued

We begin with basic source coding results for continuous random variables. Because they are
analogous to the those of the discrete case, we present them in an abridged format.

5.3.15 Theorem. Let {Xj}∞j=1 be a CMS with density pX := pX1 on R such that pX ln pX ∈
L1(R), then

− 1

n
pX1,...,Xn(x1, ..., xn) → h(X)

as n → ∞ almost surely.

Proof. This follows by the Strong Law of Large Numbers.

What follows is the generalization of typical sets to the continuous case. Because these sets
are infinite, we replace the notion of size by the measure of the set, their volume (i.e. the
Lebesgue measure).

5.3.16 Definition. For δ > 0 and n ∈ N, define

An
δ := {x ∈ Rn : | 1

n
pX1,...,Xn(x1, ..., xn) + h(X1)| < δ}.

Furthermore, define its volume as

vol(An
δ ) =

�

Rn

1An
δ
(x1, ..., xn)dx1 ...dxn .
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Next we state the continuous version of the A.E.P.

5.3.17 Theorem. Let {Xj}∞j=1 be a CMS with density pX := pX1 such that pX ln pX ∈ L1(R)
and let δ > 0, then for sufficiently large n, one has

1. P((An
δ )

c) < δ

2. vol(An
δ ) ≤ exp(n(h(X) + δ))

3. vol(An
δ ) ≥ (1− δ) exp(n(h(X)− δ))

Proof. The proof is analogous to that of the discrete version. For the volume bounds, the Hölder
inequality for sums is simply replaced by the one for integrals.

5.4 Relative (differential) entropy and mutual information

As with discrete case, the idea of mutual information is essential to channel coding and rate
distortion theory.

5.4.18 Definition. The relative entropy between random variables X and Y with densities pX
and pY on R is defined as

D(X||Y ) =

�

R
pX(x) ln

pX(x)

pY (y)
dx.

If X and Y have joint density pX,Y , then their mutual information is

I(X;Y ) =

�

R
pX,Y (x, y) ln

pX,Y (x, y)

pX(x)pY (y)
dxdy.

5.4.19 Remark. In the definition above, if the densities pX , pY , and the function pX ln pX
pY

are all
Riemann integrable (and so WLOG continuous), then

D(X∆||Y ∆) = −
�

j

pj ln
pj
qj

= −
�

j

(pX(xj)∆) ln
pX(xj)∆

pY (xj)∆

−→ −
�

pX(x) ln
pX(x)

pY (y)
dx = D(X||Y )

as ∆ → 0. Similarly, if pX,Y and pX,Y ln pX,Y

pXpY
are Riemann integrable, then

I(X∆;Y ∆) → I(X;Y )

as ∆ → 0.

These remarks allow us to lift the following corollary by a limiting procedure from the discrete
setting to the continuous one.

5.4.20 Corollary. Given random variablesX and Y with joint density pX,Y and marginal densities
pX and pY , then

1. D(X||Y ) ≥ 0 and equality holds if and only if pX = pY almost everywhere.

2. I(X;Y ) ≥ 0 and equality holds if and only if X and Y are independent.
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5.5 Lossy Compression For Continuous Sources

Instead of following the same order as we did with discrete random variables, we now cover
distortion theory instead of channel coding. After all, rate distortion is a form of source coding,
i.e. lossy compression.

5.5.21 Theorem. Let {Xj}∞j=1 be a CMS with mean zero, variance σ2, and d(a, â) = (a− â)2,
then

R(D) =

�
1
2 ln

σ2

D , 0 ≤ D ≤ σ2

0, D > σ2

and equality holds if and only if X := X1 is Gaussian.

Proof. By the same proof as before (see 10-16-14), generalized to d being unbounded,

R(D) = min
{X̂:E[d(X,X̂)]≤D}

I(X; X̂),

so for any X̂, we have R(D) ≤ I(X; X̂). Let 0 ≤ D ≤ σ2, choose a Gaussian random variable Y
with mean zero and variance σ̃2 = D−D2

σ2 which is independent ofX, and set X̂ = (1− D
σ2 )X+Y .

Now we verify that X̂ is admissible whenever D ≤ σ2.

E[(X − X̂)2] = E[(D
σ2

X + Y )2]

=
D2

σ4
E[X2] + E[Y 2]

=
D2

σ2
+D − D2

σ2

= D

Thus, X̂ is included in the minimization resulting in R(D). Next,

R(D) ≤ I(X;Y )

= h(X̂)− h(X̂|X)

= h(X̂)− h(Y + (1− D

σ2
)X|X)

= h(X̂)− h(Y |X)

= h(X̂)− h(Y )

= h(X̂)− 1

2
ln(2πe(D − D2

σ2
))
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Computing the variance of X̂ gives

E[X2] = E[(1− D

σ2
)X + Y )2]

= E[(1− D

σ2
)2X2] + E[Y 2]

= σ2(1− 2
D

σ2
+

D2

σ4
) +D − D2

σ2

= σ2 −D

Therefore, h(X̂) = !
2 ln(2πe(σ

2 −D)) (see example in 10-22-14 notes), so substituting this into
the previous inequality gives

R(D) ≤ 1

2
ln(2πe(σ2 −D))− 1

2
ln(2πe(D − D2

σ2
)) =

1

2
ln

σ2

D
.

On the other hand, if D > σ2, then taking X̂ = 0 gives

E[(X − X̂)2] = E[X2] = σ2 < D

and
I(X; X̂) = 0

by independence. Hence, R(D) = 0. To see that equality holds if and only if X is Gaussian,
note that

h(X̂) ≤ 1

2
ln(2πe(σ2 −D))

is saturated if and only if X̂ is Gaussian. Rearranging the defining equation of X̂ yields

X =
1

1− D
σ2

(X̂ − Y ),

which is Gaussian as a linear combination of Gaussians. Thus, if X̂ is a Gaussian which maximizes
the differential entropy, then X is Gaussian by the independence of X and Y .

5.6 Channel Coding For Continuous Channels and Discrete Alphabets

Usually, a channel input is subject to some constraint.

5.6.22 Definition. If E[X2] ≤ s for some s, then we say that it has an average power bounded by s.

5.6.23 Definition. The capacity of a continuous channel is given by

C(s) = max
{PX :E[X2]≤s}

I(X;Y ).
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