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Last Time

• Shannon-McMillan for continuous sources

• Relative entropy and mutual information for continuous sources

• Lossy compression for continuous sources

• Gaussian channel as worst case

5.6.24 Definition. A continuous memoryless channel (CMC) is a random map γ : R× Ω → R
which is characterized by its transition kernel ξW(· |x)x ∈ R i.e. a family of probability densities

on R for each x ∈ R.
Standard strategy of a communication system:

X ∈ R� �� �
X:sent signal coming

from analog device

−→ Q
����

quantizer

−→ X̂ ∈ Â� �� �
X : bits and bytes

A : reproduction alphabet

−→ φn
����

preprocessing before

transmitting

through antenna

−→ C∈ Rn� �� �
signal:broadcast out

through antenna

−→ γ
����

cont. channel
↓

Y ∈ Rn

↓

Ψn
↓

Z ∈ R

Important points about the system:

• We are interested in the size of alphabet for the input signal X to X̂.

• At preprocessing step, sequence is important.

• S is the average power constraint.

• Usual capacity defined as max. mutual info. business includes codewords to be transmitted.

We recall the definition of capacity for γ,

C(S) = max
Px,E[x2]≤S

I(X;Y )

with Y = γ(X)
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5.6.25 Remark. By definition, C(S) is increasing using convexity argument. Similar as before it

can be shown to be strictly increase.

5.6.26 Theorem. For any ε ∈ (0,1), there is τ , 0 < τ < 2ε and a code sequence { Cn } of
sizes |Cn| = mn such for all sufficiently large n,

1

n
lnmn > C(S)− τ

and for each c ∈ Cn ,

1

n

n�

j=1

c2j ≤ S and Pe < ε

Proof. If C(S) = 0, choose mn=1, so Pe=0. So, assume C(S) > 0

Step-1: Choose 0 < τ < min{2ε, C(S)}. Pick ξ > 0, ξ < S such that

2(C(S)- C(S-ξ)) < τ (This exits because C is strictly increasing). Thus,

2C(S − ξ) +
τ

2
> 2C(S)

C(S − ξ)− τ

2
> C(S)− τ > 0

Pick mn for sufficiently large n such that

C(S − ξ)− τ

2
>

1

n
lnmn > C(S)− τ

Let δ = τ
8 and Px the measure for the continuous source that achieves C(S−ξ), i.e. E[X2] ≤ S−ξ

and I(X;Y ) = C(S − ξ).

Step-2: Randomly draw mn codewords according to P⊗n
x . By the strong law of large num-

bers, a sequence of chosen codewords satisfies

1

n

n�

j=1

c2j
n→∞−−−→ E[X2] ≤ S− ξ a.s.

If any c ∈ Cn violates
1
n

�n
j=1 c

2
j ≤ S then replace c by 0. Next, define the encoding map

φn : {1, 2, ..., k} → Cn. When receiving a sequence y, let the decoder Ψn be given by

Ψn(y) =

�
k, (φn(k), y) ∈ F n

δ and there is no otherk�
with(φn(k�), y) ∈ F n

δ

1, else

where
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F n
δ = {(x, y) ∈ Rn × Rn :

| 1
n
p(X,Y )⊗n(x, y) + h(X1, Y1)| < δ,

| 1
n
pX⊗n(x) + h(X1)| < δ,

| 1
n
pY ⊗n(y) + h(Y1)| < δ}

Step-3: Let λK be the error probabilities for k-th transmitted codeword. Define,

G = {x ∈ Rn :
1

n

n�

j=1

x2
j > S}

Then as before, averaging w.r.t. choice of k-th codeword,

E[λK ] ≤ PX⊗n(G) + P(X,Y )⊗n((F n
δ )

c) +
mn�

k�=1,k� �=k

�

Rn

�

{y∈Rn:(ck�,y)∈Fn
δ

P(X,Y )⊗n(c, y)dydc

and,

E[Pe]
Holder ineq.

≤ PX⊗n(G) + P(X,Y )⊗n((F n
δ )

c)

+ (mn − 1) exp(−n(h(X)− δ)) exp(−n(h(Y )− δ)) exp(−n(h(X, Y ) + δ))

PX⊗n(G) + P(X,Y )⊗n((F n
δ )

c) + exp(−nδ),

similar as in the case of channel coding proof.

By choosing n sufficiently large, we can bound the error probability smaller than,

E[Pe] ≤ δ + δ + δ = 3δ = 3
τ

8
< 3

ε

4
< ε

Since the expected value for Pe is smaller than ε, there is at least one choice for Cn which has

Pe < ε a.s. (w.r.t. channel)

5.6.27 Example. Capacity for additive white Gaussian noise (AWGN), let {Xj}∞j=1 be the channel

input, then the memoryless additive channel produces outputs

Yj = Xj +Nj with{Xj, Nj} independent and{Nj}∞j=1 i.i.d.

We call a memoryless additive channel and AWGN channel if N1 is normal (Gaussian).

5.6.28 Theorem. Given an AWGN channel with mean-zero noise {Nj}∞j=1 with variance σ2 =
E[N2

1 ] > 0, subject to the average power and E[X2] ≤ S, then

C(S) =
1

2
ln (1 +

S

σ2
)
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Proof. We compute

C(S) = max
Px:E[x2]≤S

I(X;Y )

= max(h(Y )− h(Y |X))

= max(h(Y )− h(X +N |X))

= max(h(Y )− h(N |X))

= max(h(Y )− h(N)) (coming from indep.)

= max
Px:E[x2]≤S

h(Y )− h(N) (Here, we are adding extra noise with σ2
)

So,

C(S) =
1

2
ln (2πe(S + σ2))− 1

2
ln (2πeσ2) =

1

2
ln (1 +

S

σ2
)

We note that the essential quantity is simply the ratio of the signal power to that of the noise.
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