Information Theory with Applications, Math6397 Lecture Notes from November 04, 2014

taken by Ilknur Telkes

Last Time

- Shannon-McMillan for continuous sources
- Relative entropy and mutual information for continuous sources
- Lossy compression for continuous sources
- Gaussian channel as worst case

5.6.24 Definition. A continuous memoryless channel (CMC) is a random map $\gamma : \mathbb{R} \times \Omega \to \mathbb{R}$ which is characterized by its transition kernel $\xi \mathbb{W}(\cdot | x)_{x \in \mathbb{R}}$ i.e. a family of probability densities on \mathbb{R} for each $x \in \mathbb{R}$.

Standard strategy of a communication system:

Important points about the system:

- We are interested in the size of alphabet for the input signal X to \hat{X} .
- At preprocessing step, sequence is important.
- S is the average power constraint.
- Usual capacity defined as max. mutual info. business includes codewords to be transmitted.

We recall the definition of capacity for γ ,

$$C(S) = \max_{\mathbb{P}_x, \mathbb{E}[x^2] \le S} I(X;Y)$$

with $Y = \gamma(X)$

5.6.25 Remark. By definition, C(S) is increasing using convexity argument. Similar as before it can be shown to be strictly increase.

5.6.26 Theorem. For any $\varepsilon \in (0,1)$, there is τ , $0 < \tau < 2\varepsilon$ and a code sequence $\{ \mathscr{C}_n \}$ of sizes $|\mathscr{C}_n| = m_n$ such for all sufficiently large n,

$$\frac{1}{n}\ln m_n > C(S) - \tau$$

and for each $c \in \mathscr{C}_n$,

$$\frac{1}{n}\sum_{j=1}^n c_j^2 \leq S \text{ and } P_e < \varepsilon$$

Proof. If C(S) = 0, choose $m_n=1$, so $P_e=0$. So, assume C(S) > 0

Step-1: Choose $0 < \tau < min\{2\varepsilon, C(S)\}$. Pick $\xi > 0$, $\xi < S$ such that $2(C(S)-C(S-\xi)) < \tau$ (This exits because C is strictly increasing). Thus,

$$2C(S - \xi) + \frac{\tau}{2} > 2C(S)$$
$$C(S - \xi) - \frac{\tau}{2} > C(S) - \tau > 0$$

Pick m_n for sufficiently large n such that

$$C(S-\xi) - \frac{\tau}{2} > \frac{1}{n} \ln m_n > C(S) - \tau$$

Let $\delta = \frac{\tau}{8}$ and \mathbb{P}_x the measure for the continuous source that achieves $C(S-\xi)$, i.e. $\mathbb{E}[X^2] \leq S-\xi$ and $I(X;Y) = C(S-\xi)$.

Step-2: Randomly draw m_n codewords according to $\mathbb{P}_x^{\otimes n}$. By the strong law of large numbers, a sequence of chosen codewords satisfies

$$\frac{1}{n}\sum_{j=1}^{n}c_{j}^{2}\xrightarrow{n\to\infty}\mathbb{E}[X^{2}]\leq\mathsf{S}-\xi\text{ a.s.}$$

If any $c \in \mathscr{C}_n$ violates $\frac{1}{n} \sum_{j=1}^n c_j^2 \leq S$ then replace c by 0. Next, define the encoding map $\phi_n : \{1, 2, ..., k\} \to \mathscr{C}_n$. When receiving a sequence y, let the decoder Ψ_n be given by

$$\Psi_n(y) = \begin{cases} k, & (\phi_n(k), y) \in F_{\delta}^n \text{ and there is no other} k' \text{with}(\phi_n(k'), y) \in F_{\delta}^n \\ 1, & \text{else} \end{cases}$$

where

$$F_{\delta}^{n} = \{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n} :$$

$$\left|\frac{1}{n}p_{(X,Y)^{\otimes n}}(x, y) + h(X_{1}, Y_{1})\right| < \delta,$$

$$\left|\frac{1}{n}p_{X^{\otimes n}}(x) + h(X_{1})\right| < \delta,$$

$$\left|\frac{1}{n}p_{Y^{\otimes n}}(y) + h(Y_{1})\right| < \delta\}$$

Step-3: Let λ_K be the error probabilities for k-th transmitted codeword. Define,

$$G = \{ x \in \mathbb{R}^n : \frac{1}{n} \sum_{j=1}^n x_j^2 > S \}$$

Then as before, averaging w.r.t. choice of k-th codeword,

$$\mathbb{E}[\lambda_K] \le \mathbb{P}_{X^{\otimes n}}(G) + P_{(X,Y)^{\otimes n}}((F^n_\delta)^c) + \sum_{k'=1,k'\neq k}^{m_n} \int_{\{y\in\mathbb{R}^n:(ck',y)\in F^n_\delta} P_{(X,Y)^{\otimes n}}(c,y)dydc$$

and,

$$\begin{split} \mathbb{E}[P_e] \stackrel{\text{Holder ineq.}}{\leq} \mathbb{P}_{X^{\otimes n}}(G) + P_{(X,Y)^{\otimes n}}((F_{\delta}^n)^c) \\ &+ (m_n - 1) \exp(-n(h(X) - \delta)) \exp(-n(h(Y) - \delta)) \exp(-n(h(X,Y) + \delta)) \\ \mathbb{P}_{X^{\otimes n}}(G) + P_{(X,Y)^{\otimes n}}((F_{\delta}^n)^c) + \exp(-n\delta), \end{split}$$

similar as in the case of channel coding proof. By choosing n sufficiently large, we can bound the error probability smaller than,

$$\mathbb{E}[P_e] \leq \delta + \delta + \delta = 3\delta = 3\frac{\tau}{8} < 3\frac{\varepsilon}{4} < \varepsilon$$

Since the expected value for P_e is smaller than ε , there is at least one choice for \mathscr{C}_n which has $P_e < \varepsilon$ a.s. (w.r.t. channel)

5.6.27 Example. Capacity for additive white Gaussian noise (AWGN), let $\{X_j\}_{j=1}^{\infty}$ be the channel input, then the memoryless additive channel produces outputs

$$Y_j = X_j + N_j$$
 with $\{X_j, N_j\}$ independent and $\{N_j\}_{j=1}^{\infty}$ i.i.d.

We call a memoryless additive channel and AWGN channel if N_1 is normal (Gaussian).

5.6.28 Theorem. Given an AWGN channel with mean-zero noise $\{N_j\}_{j=1}^{\infty}$ with variance $\sigma^2 = \mathbb{E}[N_1^2] > 0$, subject to the average power and $\mathbb{E}[X^2] \leq S$, then

$$C(S) = \frac{1}{2}\ln\left(1 + \frac{S}{\sigma^2}\right)$$

Proof. We compute

$$C(S) = \max_{\mathbb{P}_x:\mathbb{E}[x^2] \le S} I(X;Y)$$

= max(h(Y) - h(Y|X))
= max(h(Y) - h(X + N|X))
= max(h(Y) - h(N|X))
= max(h(Y) - h(N)) (coming from indep.)
= max_{\mathbb{P}_x:\mathbb{E}[x^2] \le S} h(Y) - h(N) (Here, we are adding extra noise with σ^2)

So,

$$C(S) = \frac{1}{2}\ln\left(2\pi e(S+\sigma^2)\right) - \frac{1}{2}\ln\left(2\pi e\sigma^2\right) = \frac{1}{2}\ln\left(1+\frac{S}{\sigma^2}\right)$$

We note that the essential quantity is simply the ratio of the signal power to that of the noise.