Information Theory with Applications, Math6397 Lecture Notes from November 04, 2014

taken by Ilknur Telkes

Last Time

- Shannon-McMillan for continuous sources
- Relative entropy and mutual information for continuous sources
- Lossy compression for continuous sources
- Gaussian channel as worst case
5.6.24 Definition. A continuous memoryless channel (CMC) is a random map $\gamma: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ which is characterized by its transition kernel $\xi \mathbb{W}(\cdot \mid x)_{x \in \mathbb{R}}$ i.e. a family of probability densities on \mathbb{R} for each $x \in \mathbb{R}$.

Standard strategy of a communication system:

Important points about the system:

- We are interested in the size of alphabet for the input signal X to \hat{X}.
- At preprocessing step, sequence is important.
- S is the average power constraint.
- Usual capacity defined as max. mutual info. business includes codewords to be transmitted.

We recall the definition of capacity for γ,

$$
C(S)=\max _{\mathbb{P}_{x}, \mathbb{E}\left[x^{2}\right] \leq S} I(X ; Y)
$$

with $Y=\gamma(X)$
5.6.25 Remark. By definition, $C(S)$ is increasing using convexity argument. Similar as before it can be shown to be strictly increase.
5.6.26 Theorem. For any $\varepsilon \in(0,1)$, there is $\tau, 0<\tau<2 \varepsilon$ and a code sequence $\left\{\mathscr{C}_{n}\right\}$ of sizes $\left|\mathscr{C}_{n}\right|=m_{n}$ such for all sufficiently large n,

$$
\frac{1}{n} \ln m_{n}>C(S)-\tau
$$

and for each $c \in \mathscr{C}_{n}$,

$$
\frac{1}{n} \sum_{j=1}^{n} c_{j}^{2} \leq S \text { and } P_{e}<\varepsilon
$$

Proof. If $\mathrm{C}(\mathrm{S})=0$, choose $m_{n}=1$, so $P_{e}=0$. So, assume $\mathrm{C}(\mathrm{S})>0$
Step-1: Choose $0<\tau<\min \{2 \varepsilon, C(S)\}$. Pick $\xi>0, \xi<\mathrm{S}$ such that $2(\mathrm{C}(\mathrm{S})-\mathrm{C}(\mathrm{S}-\xi))<\tau$ (This exits because C is strictly increasing). Thus,

$$
\begin{gathered}
2 C(S-\xi)+\frac{\tau}{2}>2 C(S) \\
C(S-\xi)-\frac{\tau}{2}>C(S)-\tau>0
\end{gathered}
$$

Pick m_{n} for sufficiently large n such that

$$
C(S-\xi)-\frac{\tau}{2}>\frac{1}{n} \ln m_{n}>C(S)-\tau
$$

Let $\delta=\frac{\tau}{8}$ and \mathbb{P}_{x} the measure for the continuous source that achieves $C(S-\xi)$, i.e. $\mathbb{E}\left[X^{2}\right] \leq S-\xi$ and $I(X ; Y)=C(S-\xi)$.

Step-2: Randomly draw m_{n} codewords according to $\mathbb{P}_{x}^{\otimes n}$. By the strong law of large numbers, a sequence of chosen codewords satisfies

$$
\frac{1}{n} \sum_{j=1}^{n} c_{j}^{2} \xrightarrow{n \rightarrow \infty} \mathbb{E}\left[X^{2}\right] \leq \mathrm{S}-\xi \text { a.s. }
$$

If any $c \in \mathscr{C}_{n}$ violates $\frac{1}{n} \sum_{j=1}^{n} c_{j}^{2} \leq S$ then replace c by 0 . Next, define the encoding map $\phi_{n}:\{1,2, \ldots, k\} \rightarrow \mathscr{C}_{n}$. When receiving a sequence y , let the decoder Ψ_{n} be given by

$$
\Psi_{n}(y)= \begin{cases}k, & \left(\phi_{n}(k), y\right) \in F_{\delta}^{n} \text { and there is no otherk' }{ }^{\prime} \text { with }\left(\phi_{n}\left(k^{\prime}\right), y\right) \in F_{\delta}^{n} \\ 1, & \text { else }\end{cases}
$$

where

$$
\begin{aligned}
F_{\delta}^{n}= & \left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}:\right. \\
& \left|\frac{1}{n} p_{(X, Y)^{\otimes n}}(x, y)+h\left(X_{1}, Y_{1}\right)\right|<\delta, \\
& \left|\frac{1}{n} p_{X^{\otimes n}}(x)+h\left(X_{1}\right)\right|<\delta, \\
& \left.\left|\frac{1}{n} p_{Y \otimes n}(y)+h\left(Y_{1}\right)\right|<\delta\right\}
\end{aligned}
$$

Step-3: Let λ_{K} be the error probabilities for k-th transmitted codeword. Define,

$$
G=\left\{x \in \mathbb{R}^{n}: \frac{1}{n} \sum_{j=1}^{n} x_{j}^{2}>S\right\}
$$

Then as before, averaging w.r.t. choice of k-th codeword,

$$
\mathbb{E}\left[\lambda_{K}\right] \leq \mathbb{P}_{X \otimes n}(G)+P_{(X, Y)^{\otimes n}}\left(\left(F_{\delta}^{n}\right)^{c}\right)+\sum_{k^{\prime}=1, k^{\prime} \neq k}^{m_{n}} \int_{\mathbb{R}^{n}} \int_{\left\{y \in \mathbb{R}^{n}:\left(c k^{\prime}, y\right) \in F_{\delta}^{n}\right.} P_{(X, Y)^{\otimes n}}(c, y) d y d c
$$

and,

$$
\begin{aligned}
\mathbb{E}\left[P_{e}\right] \stackrel{\text { Holder ineq. }}{\leq} & \mathbb{P}_{X^{\otimes n}}(G)+P_{(X, Y)^{\otimes n}}\left(\left(F_{\delta}^{n}\right)^{c}\right) \\
& +\left(m_{n}-1\right) \exp (-n(h(X)-\delta)) \exp (-n(h(Y)-\delta)) \exp (-n(h(X, Y)+\delta)) \\
& \mathbb{P}_{X^{\otimes n}}(G)+P_{(X, Y)^{\otimes n}}\left(\left(F_{\delta}^{n}\right)^{c}\right)+\exp (-n \delta),
\end{aligned}
$$

similar as in the case of channel coding proof.
By choosing n sufficiently large, we can bound the error probability smaller than,

$$
\mathbb{E}\left[P_{e}\right] \leq \delta+\delta+\delta=3 \delta=3 \frac{\tau}{8}<3 \frac{\varepsilon}{4}<\varepsilon
$$

Since the expected value for P_{e} is smaller than ε, there is at least one choice for \mathscr{C}_{n} which has $P_{e}<\varepsilon$ a.s. (w.r.t. channel)
5.6.27 Example. Capacity for additive white Gaussian noise (AWGN), let $\left\{X_{j}\right\}_{j=1}^{\infty}$ be the channel input, then the memoryless additive channel produces outputs

$$
Y_{j}=X_{j}+N_{j} \text { with }\left\{X_{j}, N_{j}\right\} \text { independent and }\left\{N_{j}\right\}_{j=1}^{\infty} \text { i.i.d. }
$$

We call a memoryless additive channel and AWGN channel if N_{1} is normal (Gaussian).
5.6.28 Theorem. Given an AWGN channel with mean-zero noise $\left\{N_{j}\right\}_{j=1}^{\infty}$ with variance $\sigma^{2}=$ $\mathbb{E}\left[N_{1}^{2}\right]>0$, subject to the average power and $\mathbb{E}\left[X^{2}\right] \leq S$, then

$$
C(S)=\frac{1}{2} \ln \left(1+\frac{S}{\sigma^{2}}\right)
$$

Proof. We compute

$$
\begin{aligned}
C(S) & =\max _{\mathbb{P}_{x}: \mathbb{E}\left[x^{2}\right] \leq S} I(X ; Y) \\
& =\max (h(Y)-h(Y \mid X)) \\
& =\max (h(Y)-h(X+N \mid X)) \\
& =\max (h(Y)-h(N \mid X)) \\
& =\max (h(Y)-h(N)) \text { (coming from indep.) } \\
& \left.=\max _{\mathbb{P}_{x}: \mathbb{E}\left[x^{2}\right] \leq S} h(Y)-h(N) \text { (Here, we are adding extra noise with } \sigma^{2}\right)
\end{aligned}
$$

So,

$$
C(S)=\frac{1}{2} \ln \left(2 \pi e\left(S+\sigma^{2}\right)\right)-\frac{1}{2} \ln \left(2 \pi e \sigma^{2}\right)=\frac{1}{2} \ln \left(1+\frac{S}{\sigma^{2}}\right)
$$

We note that the essential quantity is simply the ratio of the signal power to that of the noise.

