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Last Time

• Channel coding for continuous channels

• Additive Gaussian white noise (AGWN)

Capacity of AGWN, continued

Recall that for a AGWN channel with E[X2] ≤ S,

C(S) =
1

2
ln(1 +

S

σ2
)

Now it turns out that this channel is the worst among all channels with E[Nj] = 0 and

E[N2
j ] = σ

2
.

5.6.29 Theorem. If γ is an additive memoryless channel with noise {Nj}∞j=1 of zero mean and
variance σ

2 then,
1

2
ln(1 +

S

σ2
) ≤ C(S)

Proof. Let
∼
γ be a AWGN channel with

∼
Nj having mean zero and variance σ

2
. Also, consider

a Gaussian sequence {
∼
Xj}∞j=1 with E[

∼
X

2
j ] = S. Now let us compare the mutual information

between the Gaussian and the (possibly) non-Gaussian Channel.

I(
∼
X; γ(

∼
X))− I(

∼
X;

∼
γ(

∼
X))

=

� �
p∼
X
(x)pN(y − x) ln(

pN(y − x)

pY (y)
)dydx−

� �
p∼
X
(x)p∼

N
(y − x) ln(

p∼
N
(y − x)

p∼
Y
(y)

)dydx

By equality of second moment we can replace

∼
N with N and get,

=

� �
p∼
X
(x)pN(y − x) ln(

pN(y − x)

pY (y)
)dydx−

� �
p∼
X
(x)pN(y − x) ln(

pN(y − x)

p∼
Y
(y)

)dydx
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=

� �
p∼
X
(x)pN(y−x) ln(

pN(y − x)p∼
Y
(y)

pY (y)p∼
N
(y − x)

)dydx ≥
� �

p∼
X
(x)pN(y−x)(1−

pY (y)p∼
N
(y − x)

pN(y − x)p∼
Y
(y)

)dydx

= 1−
� �

p∼
X
(x)p∼

N
(y − x)pY (y)

p∼
Y
(y)

= 1−
�

pY (y)

p∼
Y
(y)

[

�
p∼
X
(x)p∼

N
(y − x)dx]dy

= 1−
�

pY (y)

p∼
Y
(y)

[p∼
X+

∼
N=

∼
Y
(y)]dy = 1−

�
pY (y)dy = 0

and equality holds if and only if

pY (y)

p∼
Y
(y)

=
pN(y − x)

p∼
N
(y − x)

Now if we pick a y such that this equality holds, then the left hand side is fixed and the right

hand side is a constant for almost every x, so pN(y−x) = c · p∼
N
(y−x) and normalization forces

c = 1. This shows equality holds if and only if {Nj}∞j=1 is Gaussian. Next lets compare the

Gaussian and the (possibly) non-Gaussian Capacity,

max
PX

E[X2]≤S

I(X;
∼
γ(

∼
X)) = I(

∼
X;

∼
γ(

∼
X)) ≤ I(

∼
X; γ(

∼
X)) ≤ max

PX
E[X2]≤S

I(X; γ(X)) = C(S)

5.7 Partially Noisy Channel

Suppose you have Yj = Xj +Nj where

Nj =

� ∼
N j with probability 0.1

0 with probability 0.9

where

∼
N j are Gaussian with mean zero and variance σ

2
.

What is the Capacity of this Channel?

We have that

pN(x) = 0.1δ(x) +
0.9√
2πσ2

e
− 1

2σ2 x
2

hence,

h(N) = lim
∆→0

(H(N∆) + ln(∆)) = −∞

Now if we choose X so that h(Y ) is finite we get,

C(S) ≥ h(Y )− h(N) = ∞

How is this possible?

Pick X uniformly distributed between −
√
S and

√
S and transmit rational numbers repeatedly.

If the receiver gets a rational number as an output, the

∼
Nj = 0 almost surely. As a result, using

the channel n times gives decoding error probability of (0.9)n
n→∞−→ 0.
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5.8 Capacity for parallel AGWN channels

5.8.30 Theorem. Suppose we have k Channels with Gaussian white noisy variables having

variance σ1, ..., σk and an overall power constraint
k�

i=1
E[X2

i ] ≤ S, then

C(S) =
k�

i=1

1

2
ln(1 +

Si

σ
2
i

)

where Si = max{0, θ − σ
2
i } and θ is chosen such that

k�
i=1

Si = S. The process of choosing this

θ if often know as “water filling algorithm”.

Proof. By definition,

max
P
X⊗k

k�
i=1

E[X2
i ]≤S

I(X;Y )

Now since noise is independent of X,

I(X, Y ) = h(Y )− h(Y |X) = h(Y )− h(X +N |X) = h(Y )− h(N |X)

= h(Y )− h(N) ≤
k�

i=1

h(Yi)− h(Ni) =
k�

i=1

I(Yi;Ni) ≤
k�

i=1

1

2
ln(1 +

Si

σ
2
i

)

Now if we maximize the right hand side subject to

k�
i=1

Si = S we get our desired result.

To this end, we note that the sum of the logarithms is concave in {(Si + σ
2
i )/σ

2
i }, thus

averaging among Si + σ
2
i for indices with Si > 0 increases the right hand side. For a given θ,

then Si + σ
2
i = θ when Si > 0 achieves the maximum. Using the monotonicity of the logarithm,

we can choose θ so that
�k

i=1 Si = S.
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