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Recall from last time we discussed

• Capacity of AWGN

• Channel with correlated noise

• Treat eigenvalues of covariance matrix like variances in independent case

Warm up : Matrix Theory

We need to prove this statement:

5.7.32 Proposition

For any n×k matrix T over R det (In + TT
t) = det (Ik + T

t
T ) .

Proof. Consider ε ≥ 0. We want to show det (In + εTT
t) = det (Ik + εT

t
T ) so if ε = 0 the

statement is proven because the LHS=RHS=1.
Now consider ε > 0. First we want to define the functions fn(ε) = det (In + εTT

t) and

fk(ε) = det (Ik + εT
t
T ) then we will compute the derivative of fn at 0.

f
�
n
(0) = d

dε |ε=0 det (In + εTT
t)

= Tr[TT t]
= Tr[T t

T ] by elementary matrix production also

= d
dε |ε=0 det (Ik + εT

t
T ) which satisfies the same differential equation as fk at t = 0.

More generally, if we choose A to be the inverse A = (In + ε̃TT
t)−1

then

fn(ε̃+ ε) = det(In + ε̃TT
t + εTT

t) = det(A−1) det(In + AεTT
t)

and taking the derivative at � = 0 gives

f
�
n
(ε̃) =

d

dε
|ε=0 det(In + ε̃TT

t + εTT
t) = det(In + ε̃TT

t)tr[(In + ε̃TT
t)−1

εTT
t]

We note that by equating terms in the power series expansion,

tr[(In + ε̃TT
t)−1

εTT
t] = tr[(Ik + ε̃T

t
T )−1

εT
t
T ]
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thus reversing the steps gives f
�
n
(ε̃) = fn(ε̃)g(ε̃) and f

�
k
(ε̃) = fk(ε̃)g(ε̃) with the same g.

By the uniqueness of the solution to ordinary differential equations with Lipschitz-continuous

expressions for the derivative, we see that fk and fn coincide.

5.7.33 Theorem

For a fixed n× k matrix H ( linear model coding ) and Rn
-valued zero mean Gaussian Random

Variable N with covariance

E [NiNj] = δi,j

The capacity of γ, γ(X)= HX+N subject to the input constraint
�

k

j=1 E
�
X

2
j

�
≤ S is

C(S) =
k�

j=1

(ln (µλj))
+

where {λj}
k

j=1 are eigenvalues of H
t
H and µ is chosen such that

�
k

j=1

�
µ− λ

−1
j

�+
= S.

Proof. Based on Mutual Information, as usual I(X;Y )= h(Y ) -h(N). So we need to maximize

h(Y ). Using short hand notation X = (x1, x2, .....xk)t CX = E [XX
t] because (CX)i,j =

E [XiXj]. By the linearity of X → HX we have

(CX)ij = E [(HX +N)
i
(HX +N)j]

= E [(HX)
i
(HX)j] + δi,j

CY = HCXH
t + I

Thus, we have an upper bound for h(Y ) by the differential entropy of a corresponding Gaussian

with the same covariance matrix, h(Y ) ≤ 1
2 ln ((2πe)ndet(I +HCXH

t)) and this bound can be

achieved by choosing X Gaussian, which implies that Y is Gaussian.

For a given H take SVD(Singular Value Decomposition) such that:

H = ODW

where W is isometry, O is orthogonal, D is diagonal and D contains entries

�√
λi

�n

i=1
where λi

are non negative eigenvalues ofHH
t
= OD

2Ot
whereD

2
has diagonal matrix λi and 0 elsewhere.

Using the orthogonal invariance of determinants, we then have h(Y )= 1
2 ln ((2πe)ndet(I +DWCXW

t
D)).

Next we factor CX = V V
t
by positive definiteness of CX . So reordering in the determinant as

shown above results in det(In +DWCXW
t
D) = det(In +DWV V

t
W

t
D)

= det(Ik + V
t
W

t
D

2
WD) .

To continue, we choose an SVD of V such that V= O�∆O��
where ∆ is the diagonal matrix

and again after using the invariance of determinants we apply Hadamard’s inequality, det(Ik +
V

t
W

t
D

2
WV ) = det(Ik +∆W

t
D

2
W∆)

≤

k�

j=1



1 + (∆W
t
D

2
W∆)j,j� �� �

∆2
j,j(W

tD2W )j,j




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So Equality holds in Hadamard’s Inequality if and only if WD
2
W

t
is diagonal. To achieve equality

we let V V
t
have same eigenbasis such as W

t
D

2
W= H

t
H .

Next we wish to maximize

k�

j=1



1 + (∆2)j,j� �� �
eigenvalue ofCX

(W t
D

2
W )j,j� �� �

eigenvalue ofHtH





subject to
k�

j=1

�
∆2

�
j,j

= Tr[CX ] ≤ S

The optimal choice of CX gives the Euler-Lagrange Equation :

λj(1 + (V V
t)j,jλj)

−1 =

�
µ, (V V

t)j,j > 0

λj, else

So

(V V
t)j,j =

�
1
µ
−

1
λj
(V V

t)j,j > 0

0, else

and µ is chosen such that
�

k

j=1(V V
t)j,j = S.

To end this the Hadamard’s inequality achieved if and only if the matrix is diagonal matrix. Thus,

the upper bound is achieved if the matrix is diagonal with corresponding entries such that Euler

Lagrange equations are satisfied.
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