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We are getting close to the frame theory!

Recall from the last time we did in class:

� γ(X) =

matrix����
HX +

i.i.d., Gaussian with variance σ
2

����
N

We had arrived at an upper bound
�

k

j=1( 1 + (∆)2
j,j� �� �

eigenvalues of CX :S2
j

(W t
D

2
W )j,j� �� �

eigenvalues of Ht
H:λj

)

(Note: This estimate is achieved if CX and H
t
H are simultaneously diagonalizable.)

To compute the capacity, we want to maximize ln
�

k

j=1(1 + .........).

EulerLagrange equations give: λi(1 + Sjλj)−1 =

�
M, Sj > 0

λj, else
,

so Sj =

�
1
µ
− 1

λj
, Sj > 0

0, else
and µ is choosen such that

�
k

j=1 Sj = S.

Now we compute the mutual information

I(X;Y ) =
1

2
ln((2πe)n

�

j=1

(λj(µ
−1 − λ

−1
j
)+ + 1))− 1

2
ln((2πe)n))

=
1

2
ln(

k�

j=1

max{1,λjµ
−1})

=
1

2

k�

j=1

(ln(λjµ
−1))+

where µ gives
�

k

j=1(
1
µ
− 1

λj
)+ = S.
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Now we get to today’s inequality:

Given A = A
t, opt. on H and P = P

∗
P , (P = P

2
, P = P

∗), rankP = k, We claim

tr[PA] ≤
�

k

j=1 λj, whose {λ1,λ2,λ3, ......,λk−1,λ,λk} are the k largest eigenvalues of A.

Proof: Let A =
�∞

j=1 λjEj, without loss of generality rankEj = 1, E∗
j
Ej = Ej. If P is a

rank-free projection, then P = XX
∗, |X| = 1, and

max
P=xx∗

tr[PA] = max
P=xx∗

∞�

l=1

�PAel, el�� �� �
�Ael,x� �x, el�� �� �

�

= max
�x�=1

�Ax, x�

= max
�x�=1

∞�

j=1

λj �Ejx, x�� �� �
�Ejx�2=Pj ,

�∞
j=1 Pj=1

≤ max
j

λj.

(Note: � is achieved if we choose e1 = x, el ⊥ x, l ≥ 2)

If rankP = k, we have tr[AP ] =
�∞

j=1 λj tr[Ejp]� �� �
≤1

and
�∞

j=1 tr[EjP ] = tr[P ] = k, so we need to:

maximize
�∞

j=1 λjPj, subject to 0 ≤ Pj ≤ 1,
�∞

j=1 Pj = k.

In this case, we choose Pj = 1 when j belongs to the k largest eigenvalues, and else set

Pj = 0, then tr[PA] =
�

k

j=1 λj.

7 Linear codes for parallel additive white noise channels

Assume we have input X = (X1, X2, ......, Xk) with Xj i.i.d. zero-mean Gaussians and CX = S

k
I

and suppose γ : Rn × Ω → R
k is additive white Gaussian noise (AWGN) γ(X̂) = X̂ + N . We

have input constraint tr[C
X̂
] ≤ S and noise coveriance CN .

QUESTION: What is the best linear encoding X̂ = HX
2?
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By power constraint and

tr[C
X̂
] = tr[H Cx����

S
k I

H
t]

=
S

k
tr[HH

t] ≤ S

We have tr[HH
t] ≤ k.

According to the usual procedure, we then want to:

maximize det(CN + S

k
HH

t), subject to tr[HH
t] ≤ k.

Choosing a basis which diagonalizes CN then gives:

det(CN + S

k
HH

t) = det(D2 + S

k
ĤĤ

t) with �H = DH.

We assume eigenvalues of CN that are strictly positive, otherwise the capacity would be

infinite. In this case, we can factor them out of the determinant:

det(CN +
S

k
HH

t) = det(D2)det(In +
S

k
D

−1 �H �H t
D

−1)

= det(D2)det(Ik +
S

k

�H t
D

−2 �H)

= det(D2)det(Ik +
S

k

�V t�W t
D

−2�W �V )

≤ det(D2)
k�

j=1

(1 +
S

k

�V 2
j,j
(�W t

D
−2�W )j,j)

where �V is diagonal positive, �W is isometry, equality holds in hadamard’s inequality if and

only if �W t
D

−2�W is diagonal.

In this case, the maximum value is achieved by picking the k largest eigenvalues of D−2.

To achieve equality, we choose HH
t so that it is simultaneously diagonalizable with CN and

the range of H is the span of eigenvectors of CN corresponding to the k largest eigenvalues of

C
−1
N

, meaning the k smallest eigenvalues of CN .

Then, �H t �H is diagonal with entries such that the Euler-Lagrange equations are satisfied:

S

k
λj(1 +

S

k
( �H t �H)j,jλj)−1 =






µ, ( �H t �H)j,j > 0

S

k
λj, else

,

so �H t �H =






1
µ
− k

Sλj
, ( �H t �H)j,j > 0

0, else

.
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We then get:

I(X;Y ) =
1

2
ln((2πe)n

k�

j=1

(λj(µ
−1 − k

S
λ
−1
j
)+ + 1)det(D2)� �� �

det(CN )

− 1

2
ln((2πe)ndet(CN))

=
1

2
ln(

k�

j=1

(λj(µ
−1 − k

S
λ
−1
j
)+

� �� �
λj
µ − k

S

+1))

=
1

2

k�

j=1

ln((
λj

µ
− k

S
)+ + 1)

where µ is choosen such that tr[ �H t �H] =
�

k

j=1(
1
µ
− k

Sλj
)+ = k.
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