Information Theory with Applications, Math6397 Lecture Notes from November 18, 2014

taken by Junyu Ding

We are getting close to the frame theory!
Recall from the last time we did in class:

- $\gamma(X)=\stackrel{\text { matrix }}{H X}+\overbrace{N}^{\text {ii.d., Gussian with variance } \sigma^{2}}$

We had arrived at an upper bound $\prod_{j=1}^{k}(\underbrace{1+(\Delta)_{j, j}^{2}}_{\text {eigenvalues of } C_{X}: S_{j}^{2}} \underbrace{\left(W^{t} D^{2} W\right)_{j, j}}_{\text {eigenvalues of } H^{t} H: \lambda_{j}})$
(Note: This estimate is achieved if C_{X} and $H^{t} H$ are simultaneously diagonalizable.)
To compute the capacity, we want to maximize $\ln \prod_{j=1}^{k}(1+\ldots \ldots \ldots)$.
EulerLagrange equations give: $\lambda_{i}\left(1+S_{j} \lambda_{j}\right)^{-1}=\left\{\begin{array}{ll}M, & S_{j}>0 \\ \lambda_{j}, & \text { else }\end{array}\right.$,
so $S_{j}=\left\{\begin{array}{ll}\frac{1}{\mu}-\frac{1}{\lambda_{j}}, & S_{j}>0 \\ 0, & \text { else }\end{array}\right.$ and μ is choosen such that $\sum_{j=1}^{k} S_{j}=S$.
Now we compute the mutual information

$$
\begin{aligned}
I(X ; Y) & \left.=\frac{1}{2} \ln \left((2 \pi e)^{n} \prod_{j=1}\left(\lambda_{j}\left(\mu^{-1}-\lambda_{j}^{-1}\right)^{+}+1\right)\right)-\frac{1}{2} \ln \left((2 \pi e)^{n}\right)\right) \\
& =\frac{1}{2} \ln \left(\prod_{j=1}^{k} \max \left\{1, \lambda_{j} \mu^{-1}\right\}\right) \\
& =\frac{1}{2} \sum_{j=1}^{k}\left(\ln \left(\lambda_{j} \mu^{-1}\right)\right)^{+}
\end{aligned}
$$

where μ gives $\sum_{j=1}^{k}\left(\frac{1}{\mu}-\frac{1}{\lambda_{j}}\right)^{+}=S$.

Now we get to today's inequality:
Given $A=A^{t}$, opt. on \mathbb{H} and $P=P^{*} P,\left(P=P^{2}, P=P^{*}\right)$, $\operatorname{rank} P=k$, We claim $\operatorname{tr}[P A] \leq \sum_{j=1}^{k} \lambda_{j}$, whose $\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \ldots, \lambda_{k-1, \lambda}, \lambda_{k}\right\}$ are the k largest eigenvalues of A.

Proof: Let $A=\sum_{j=1}^{\infty} \lambda_{j} E_{j}$, without loss of generality $\operatorname{rank} E_{j}=1, E_{j}^{*} E_{j}=E_{j}$. If P is a rank-free projection, then $P=X X^{*},|X|=1$, and

$$
\begin{aligned}
\max _{P=x x^{*}} \operatorname{tr}[P A] & =\max _{P=x x^{*}} \sum_{l=1}^{\infty} \underbrace{\left\langle P A e_{l}, e_{l}\right\rangle}_{\left\langle A e_{l}, x\right\rangle} \\
& =\max _{\|x\|=1}^{\left\langle x, e_{l}\right\rangle}\langle A x, x\rangle \\
& =\max _{\|x\|=1} \sum_{j=1}^{\infty} \lambda_{j} \underbrace{\left\langle E_{j} x, x\right\rangle}_{\left\|E_{j} x\right\|^{2}=P_{j}, \sum_{j=1}^{\infty}} P_{j}=1 \\
& \leq \max _{j} \lambda_{j} .
\end{aligned}
$$

(Note: $\boldsymbol{\star}$ is achieved if we choose $e_{1}=x, e_{l} \perp x, l \geq 2$)
If $\operatorname{rankP}=k$, we have $\operatorname{tr}[A P]=\sum_{j=1}^{\infty} \lambda_{j} \underbrace{\operatorname{tr}\left[E_{j} p\right]}_{\leq 1}$
and $\sum_{j=1}^{\infty} \operatorname{tr}\left[E_{j} P\right]=\operatorname{tr}[P]=k$, so we need to:
maximize $\sum_{j=1}^{\infty} \lambda_{j} P_{j}$, subject to $0 \leq P_{j} \leq 1, \sum_{j=1}^{\infty} P_{j}=k$.
In this case, we choose $P_{j}=1$ when j belongs to the k largest eigenvalues, and else set $P_{j}=0$, then $\operatorname{tr}[P A]=\sum_{j=1}^{k} \lambda_{j}$.

7 Linear codes for parallel additive white noise channels

Assume we have input $X=\left(X_{1}, X_{2}, \ldots \ldots, X_{k}\right)$ with X_{j} i.i.d. zero-mean Gaussians and $C_{X}=\frac{S}{k} I$ and suppose $\gamma: \mathbb{R}^{n} \times \Omega \rightarrow \mathbb{R}^{k}$ is additive white Gaussian noise (AWGN) $\gamma(\hat{X})=\hat{X}+N$. We have input constraint $\operatorname{tr}\left[C_{\hat{X}}\right] \leq S$ and noise coveriance C_{N}.

QUESTION: What is the best linear encoding $\hat{X}=H X^{2}$?

By power constraint and

$$
\begin{aligned}
\operatorname{tr}\left[C_{\hat{X}}\right] & =\operatorname{tr}[H \underbrace{C_{x}}_{\frac{S}{k} I} H^{t}] \\
& =\frac{S}{k} \operatorname{tr}\left[H H^{t}\right] \leq S
\end{aligned}
$$

We have $\operatorname{tr}\left[H H^{t}\right] \leq k$.
According to the usual procedure, we then want to:
maximize $\operatorname{det}\left(C_{N}+\frac{S}{k} H H^{t}\right)$, subject to $\operatorname{tr}\left[H H^{t}\right] \leq k$.
Choosing a basis which diagonalizes C_{N} then gives:
$\operatorname{det}\left(C_{N}+\frac{S}{k} H H^{t}\right)=\operatorname{det}\left(D^{2}+\frac{S}{k} \hat{H} \hat{H}^{t}\right)$ with $\widetilde{H}=D H$.
We assume eigenvalues of C_{N} that are strictly positive, otherwise the capacity would be infinite. In this case, we can factor them out of the determinant:

$$
\begin{aligned}
\operatorname{det}\left(C_{N}+\frac{S}{k} H H^{t}\right) & =\operatorname{det}\left(D^{2}\right) \operatorname{det}\left(I_{n}+\frac{S}{k} D^{-1} \widetilde{H} \widetilde{H}^{t} D^{-1}\right) \\
& =\operatorname{det}\left(D^{2}\right) \operatorname{det}\left(I_{k}+\frac{S}{k} \widetilde{H}^{t} D^{-2} \widetilde{H}\right) \\
& =\operatorname{det}\left(D^{2}\right) \operatorname{det}\left(I_{k}+\frac{S}{k} \widetilde{V}^{t} \widetilde{W}^{t} D^{-2} \widetilde{W} \widetilde{V}\right) \\
& \leq \operatorname{det}\left(D^{2}\right) \prod_{j=1}^{k}\left(1+\frac{S}{k} \widetilde{V}_{j, j}^{2}\left(\widetilde{W^{t}} D^{-2} \widetilde{W}\right)_{j, j}\right)
\end{aligned}
$$

where \widetilde{V} is diagonal positive, \widetilde{W} is isometry, equality holds in hadamard's inequality if and only if $\widetilde{W}^{t} D^{-2} \widetilde{W}$ is diagonal.

In this case, the maximum value is achieved by picking the k largest eigenvalues of D^{-2}.
To achieve equality, we choose $H H^{t}$ so that it is simultaneously diagonalizable with C_{N} and the range of H is the span of eigenvectors of C_{N} corresponding to the k largest eigenvalues of C_{N}^{-1}, meaning the k smallest eigenvalues of C_{N}.

Then, $\widetilde{H}^{t} \widetilde{H}$ is diagonal with entries such that the Euler-Lagrange equations are satisfied:

$$
\begin{aligned}
& \frac{S}{k} \lambda_{j}\left(1+\frac{S}{k}\left(\widetilde{H}^{t} \widetilde{H}\right)_{j, j} \lambda_{j}\right)^{-1}=\left\{\begin{array}{c}
\mu,\left(\widetilde{H}^{t} \widetilde{H}\right)_{j, j}>0 \\
\frac{S}{k} \lambda_{j}, \text { else }
\end{array}\right. \\
& \text { so } \widetilde{H}^{t} \widetilde{H}=\left\{\begin{array}{c}
\frac{1}{\mu}-\frac{k}{S \lambda_{j}},\left(\widetilde{H}^{t} \widetilde{H}\right)_{j, j}>0 \\
0, \text { else }
\end{array}\right.
\end{aligned}
$$

We then get:

$$
\begin{aligned}
I(X ; Y) & =\frac{1}{2} \ln ((2 \pi e)^{n} \prod_{j=1}^{k}\left(\lambda_{j}\left(\mu^{-1}-\frac{k}{S} \lambda_{j}^{-1}\right)^{+}+1\right) \underbrace{\operatorname{det}\left(D^{2}\right)}_{\operatorname{det}\left(C_{N}\right)}-\frac{1}{2} \ln \left((2 \pi e)^{n} \operatorname{det}\left(C_{N}\right)\right) \\
& =\frac{1}{2} \ln (\prod_{j=1}^{k}(\underbrace{\lambda_{j}\left(\mu^{-1}-\frac{k}{S} \lambda_{j}^{-1}\right)^{+}}_{\frac{\lambda_{j}}{\mu}-\frac{k}{S}}+1)) \\
& =\frac{1}{2} \sum_{j=1}^{k} \ln \left(\left(\frac{\lambda_{j}}{\mu}-\frac{k}{S}\right)^{+}+1\right)
\end{aligned}
$$

where μ is choosen such that $\operatorname{tr}\left[\widetilde{H}^{t} \widetilde{H}\right]=\sum_{j=1}^{k}\left(\frac{1}{\mu}-\frac{k}{S \lambda_{j}}\right)^{+}=k$.

