
Information Theory with Applications, Math6397
Lecture Notes from November 18, 2014

taken by Junyu Ding

We are getting close to the frame theory!

Recall from the last time we did in class:

� γ(X) =

matrix����
HX +

i.i.d., Gaussian with variance σ
2

����
N

We had arrived at an upper bound
�

k

j=1( 1 + (∆)2
j,j� �� �

eigenvalues of CX :S2
j

(W t
D

2
W )j,j� �� �

eigenvalues of Ht
H:λj

)

(Note: This estimate is achieved if CX and H
t
H are simultaneously diagonalizable.)

To compute the capacity, we want to maximize ln
�

k

j=1(1 + .........).

EulerLagrange equations give: λi(1 + Sjλj)−1 =

�
M, Sj > 0

λj, else
,

so Sj =

�
1
µ
− 1

λj
, Sj > 0

0, else
and µ is choosen such that

�
k

j=1 Sj = S.

Now we compute the mutual information

I(X;Y ) =
1

2
ln((2πe)n

�

j=1

(λj(µ
−1 − λ

−1
j
)+ + 1))− 1

2
ln((2πe)n))

=
1

2
ln(

k�

j=1

max{1, λjµ
−1})

=
1

2

k�

j=1

(ln(λjµ
−1))+

where µ gives
�

k

j=1(
1
µ
− 1

λj
)+ = S.
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Now we get to today’s inequality:

Given A = A
t, opt. on H and P = P

∗
P , (P = P

2
, P = P

∗), rankP = k, We claim

tr[PA] ≤
�

k

j=1 λj, whose {λ1, λ2, λ3, ......, λk−1,λ, λk} are the k largest eigenvalues of A.

Proof: Let A =
�∞

j=1 λjEj, without loss of generality rankEj = 1, E∗
j
Ej = Ej. If P is a

rank-free projection, then P = XX
∗, |X| = 1, and

max
P=xx∗

tr[PA] = max
P=xx∗

∞�

l=1

�PAel, el�� �� �
�Ael,x� �x, el�� �� �

�

= max
�x�=1

�Ax, x�

= max
�x�=1

∞�

j=1

λj �Ejx, x�� �� �
�Ejx�2=Pj ,

�∞
j=1 Pj=1

≤ max
j

λj.

(Note: � is achieved if we choose e1 = x, el ⊥ x, l ≥ 2)

If rankP = k, we have tr[AP ] =
�∞

j=1 λj tr[Ejp]� �� �
≤1

and
�∞

j=1 tr[EjP ] = tr[P ] = k, so we need to:

maximize
�∞

j=1 λjPj, subject to 0 ≤ Pj ≤ 1,
�∞

j=1 Pj = k.

In this case, we choose Pj = 1 when j belongs to the k largest eigenvalues, and else set

Pj = 0, then tr[PA] =
�

k

j=1 λj.

7 Linear codes for parallel additive white noise channels

Assume we have input X = (X1, X2, ......, Xk) with Xj i.i.d. zero-mean Gaussians and CX = S

k
I

and suppose γ : Rn × Ω → R
k is additive white Gaussian noise (AWGN) γ(X̂) = X̂ + N . We

have input constraint tr[C
X̂
] ≤ S and noise coveriance CN .

QUESTION: What is the best linear encoding X̂ = HX
2?
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By power constraint and

tr[C
X̂
] = tr[H Cx����

S
k I

H
t]

=
S

k
tr[HH

t] ≤ S

We have tr[HH
t] ≤ k.

According to the usual procedure, we then want to:

maximize det(CN + S

k
HH

t), subject to tr[HH
t] ≤ k.

Choosing a basis which diagonalizes CN then gives:

det(CN + S

k
HH

t) = det(D2 + S

k
ĤĤ

t) with �H = DH.

We assume eigenvalues of CN that are strictly positive, otherwise the capacity would be

infinite. In this case, we can factor them out of the determinant:

det(CN +
S

k
HH

t) = det(D2)det(In +
S

k
D

−1 �H �H t
D

−1)

= det(D2)det(Ik +
S

k

�H t
D

−2 �H)

= det(D2)det(Ik +
S

k

�V t�W t
D

−2�W �V )

≤ det(D2)
k�

j=1

(1 +
S

k

�V 2
j,j
(�W t

D
−2�W )j,j)

where �V is diagonal positive, �W is isometry, equality holds in hadamard’s inequality if and

only if �W t
D

−2�W is diagonal.

In this case, the maximum value is achieved by picking the k largest eigenvalues of D−2.

To achieve equality, we choose HH
t so that it is simultaneously diagonalizable with CN and

the range of H is the span of eigenvectors of CN corresponding to the k largest eigenvalues of

C
−1
N

, meaning the k smallest eigenvalues of CN .

Then, �H t �H is diagonal with entries such that the Euler-Lagrange equations are satisfied:

S

k
λj(1 +

S

k
( �H t �H)j,jλj)−1 =






µ, ( �H t �H)j,j > 0

S

k
λj, else

,

so �H t �H =






1
µ
− k

Sλj
, ( �H t �H)j,j > 0

0, else

.
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We then get:

I(X;Y ) =
1

2
ln((2πe)n

k�

j=1

(λj(µ
−1 − k

S
λ
−1
j
)+ + 1)det(D2)� �� �

det(CN )

− 1

2
ln((2πe)ndet(CN))

=
1

2
ln(

k�

j=1

(λj(µ
−1 − k

S
λ
−1
j
)+

� �� �
λj
µ − k

S

+1))

=
1

2

k�

j=1

ln((
λj

µ
− k

S
)+ + 1)

where µ is choosen such that tr[ �H t �H] =
�

k

j=1(
1
µ
− k

Sλj
)+ = k.
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