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Last Time

• Linear codes for continuous channels.

Summary of the last result:

Theorem: Given a random input vector: X : Ω → Rk
, Xj i.i.d. with zero mean , Gaussian

components having covariance matrix: CX = S

k
I and a channel γ : Rn×Ω → Rn

, γ(X̂) = X̂+N

then the best linear encoding achieves :
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where {σ2
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j=1 are the k smallest eigen values of CN and µ is chosen such that :
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Note: If noise has components, σj = σ then using a linear encoding into Rn
with large ’n’

is of no use.
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8 Frames as Codes

Recall: A q-ary block code of length m, φn : Ak → An
, |A| = q has rate :

R =
logq(m)

n
=

logq|A|k

n
=

logq(q)k

n
=

k

n

(also known as ’coding rate’)
For invertible φn we have : R ≤ 1 or k ≤ n.

8.0.1 Definition:

If φn : Fk → Fn
and F = R or F = C then we say that φn has dimensionless rate R = k

n
. If

φn(a) = Ha, where H is a n × k matrix, then we say the code is linear and H is called the

encoding matrix.
In this case by linearity of H and Riesz representation theorem (for Hilbert spaces):

(Ha)j =< a, fj >

and if H is left-invertible, then there exists c > 0 such that: H
∗
H ≥ cI where H is a positive

definite matrix and we have an operator inequality, i.e.

< H
∗
Hx, x >= ||Hx||2 ≥ c||x||2

where
√
c is the strictly positive distance of x from 0.

Also by boundedness of H , there is C > 0, such that : H
∗
H ≤ CI. Thus for each x in Fk

:

c||x||2 ≤ ||Hx||2 =
n�

j=1

| < x, fj > |2 ≤ C||x||2

If these inequalities hold for 0 < c ≤ C < ∞, then we say that {fj}nj=1 forms a frame for Fk
.

Remark: Given a frame {fj}nj=1 for Fk
, then :

�
n

j=1 < x, fj > fj = H
∗
Hx , where H

∗
H

is an invertible matrix. So we have,for all x in Fk
:

n�

j=1

< x, fj > (H∗
H)−1

fj = x

8.0.2 Definition:

For {fj}nj=1 frame for Fk
, with associated map : H : Fk → Fn

we call : gj = (H∗
H)−1

fj the

canonical dual frame to {fj}nj=1.

We can restore the signal with with a different set of vectors. For example, if K is an

n× n-matrix such that HH
∗
K = 0, then

n�

j,l=1

(δj,l +Kj,l) < x, fl > (H∗
H)−1

fj = x

and thus hj =
�

n

l=1(δl,j +Kl,j)(H∗
H)−1

fl is another choice for a dual.
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8.0.3 Definition:

If a frame is identical to its canonical dual, gj = fj for all j, then we call {fj}nj=1 a Parseval
frame.
In this case, using H

∗
H = Ik gives:

n�

j=1

< x, fj >< fj, x >=< x, x >= ||x||2

similar to the Parseval identity for orthonormal basis, though the frame vectors do not have to

be orthonormal.

8.0.4 Lemma

If {fj}nj=1 is a Parseval frame for Fk
and H the associated encoding matrix, then among all left

inverses of H, H
∗
has minimal operator norm and Hilbert-Schmidt norm.

Proof: Let G (k × n matrix) be another left-inverse of H or GH = Ik.

• For the Operator Norm:

||G|| = max
y∈Fn

y �=0

||Gy||
||y|| ≥ max

y∈Fn

y �=0
y=Hx,x∈Fk

||Gy||
||y|| (since we maximize over a lesser range now)

= max
x∈Fk

x �=0

||GHx||
||Hx|| (Here GH = I and ||Hx|| = ||x|| by Parseval)

= max
x∈Fk

x�=0

||x||
||x||

or ||G|| ≥ 1

Also : ||H∗|| = ||H|| = 1
Thus we have: ||G|| ≥ ||H∗|| , or H∗

has the minimal operator norm.

• For the Hilbert-Schmidt Norm: For any orthonormal basis {ei}ki=1 of Fk
, using that

{Hei}ki=1 is an orthonormal system (not basis), we get:

tr[G∗
G] ≥

k�

i=1

< G
∗
GHei, Hei >

=
k�

i=1

< GHei, GHei > (using GH = I)

=
k�

i=1

< ei, ei > (< ei, ei >= 1 since orthonormal)

= k = tr[H∗
H]

or tr[G∗
G] ≥ tr[HH

∗]

Thus H
∗
is the optimal choice for Hilbert-Schmidt norm.
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Parseval frames have an interesting geometric property.

Since the encoding matrix H is an isometry, H
∗
H = I, and we obtain the trace identity

k = tr[H∗
H] = tr[HH

∗] =
n�

j=1

< fj, fj >=
n�

j=1

||fj||2 .

8.0.5 Corollary:

For a Parseval frame {fj}nj=1,
�

n

j=1 �fj�2 = k.

Thus, we can think of {fj}nj=1 as being a ’vector-valued’ sphere.

8.0.6 Definition:

If a frame {fj}nj=1 has only vectors of norm : ||fj|| = c, then we call it an equal-norm frame.

8.0.7 Corollary:

If {fj}nj=1 is an equal-norm and Parseval frame, then ||fj|| =
�

k

n
for each j.

Proof: Since {fj}nj=1 is an equal-norm frame, using k =
�

n

j=1 ||fj||2, we get:

k = n||fj||2

⇒ ||fj|| =
�

k

n

8.0.8 Definition:

We call a Parseval frame {fj}nj=1 for Fk
a (n,k)-frame.

8.1 Erasures

Given an ecoding with the Parseval frame by associated isometry, V : Rk → Rn
, consider the

”loss” of frame co-efficients. This means, we cannot use the value of certain coefficients to

reconstruct or even approximate a vector x. To model this in a nathematically concise form, we

set the corresponding frame coefficients to zero.
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8.1.1 Definition:

A one erasure El, indexed by l ∈ {1, 2, ..., n} is a map El : Rk → Rn
given by:

x �→





1 0 · · · · · · · · · · · · 0

0
. . .

...

... 1
...

... 0 (lth column)
...

... 1
...

...
. . . 0

0 · · · · · · · · · · · · 0 1





x

A general erasure is a diagonal projection matrix.

Qs. Can we recover x from EV x ,where E is a general erasure and how?
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