Functional Analysis, Math 7320
 Lecture Notes from August 25, 2016

taken by Kazem Safari

1 Essentials of Topology

1.1 Continuity

Next, we recall continuity
1.1.1 Definition. Let X, Y be topological spaces and $x \in X$. A map $f: X \rightarrow Y$ is continuous at x, if for each neighborhood U of $f(x), f^{-1}(U)^{1}$ is a neighborhood of x.

For the purpose of proving results we can weaken the above condition to the following:
1.1.2 Remark. (a) f is continuous at x iff for each neighborhood U of $f(x)$ there exists a neighborhood V of x s.t. $f(V) \subset U$.
(b) If X, Y are metric spaces, then $f: X \rightarrow Y$ is continuous at x iff for every $\varepsilon>0$ there exist a $\delta>0$ s.t. $f\left(B_{\delta}(x)\right) \subset B_{\varepsilon}(f(x)) .^{2}$
1.1.3 Lemma (composition rule). If $f: X \rightarrow Y$ is continuous at x and $g: Y \rightarrow Z$ is continuous at $f(x)$, then $g \circ f: X \rightarrow Z$ is continuous at x.

Proof. Follows from definition of continuity and taking inverse image twice.
1.1.4 Definition. Let X, Y be topological spaces, then $f: X \rightarrow Y$ is continuous if for each open set $U \subset Y$, the preimage, $f^{-1}(U)$ is open in $X .^{3}$
1.1.5 Theorem. Let X, Y be topological spaces and $f: X \rightarrow Y$, then TFAE
(1) f is continuous.
(2) f is continuous at every $x \in X$.
(3) If F is closed in Y, then $f^{-1}(F)$ is closed in X.
(4) For every $M \subset X$, we have that $f(\bar{M}) \subset \overline{f(M)}$

[^0]Proof. (1) $\Longleftrightarrow(2)$ is immediate,
(1) $\Longrightarrow(3)$,

Let F be closed in Y, then $U=Y \backslash F$ is open in Y, then by $(1) f^{-1}(U)$ is open in X, but $X=f^{-1}(U) \cup f^{-1}(F)$ therefore $f^{-1}(F)=X \backslash f^{-1}(U)$ is closed in X.
$(3) \Longrightarrow(1)$ The argument is similar.
To prove $(3) \Longrightarrow(4)$, we first show that $(3) \Longrightarrow\left(4^{\prime}\right)$,
(4') For any $Q \subset Y, \overline{f^{-1}(Q)} \subset f^{-1}(\bar{Q})$.
To this end, from $Q \subset \bar{Q}$ we have $f^{-1}(Q) \subset f^{-1}(\bar{Q})$ and since $f^{-1}(\bar{Q})$ is a closed subset of X by $(3), f^{-1}(Q) \subset f^{-1}(\bar{Q})=\overline{f^{-1}(\bar{Q})}$ and we can take the closure on the left-hand side while the inequality remains intact.

To get from (4^{\prime}) to (4), consider $M \subset X$, and let $Q=f(M)$, then by $\left(4^{\prime}\right)$:

$$
\overline{f^{-1}(f(M))} \subset f^{-1}(\overline{f(M)}) \quad(\star)
$$

From $M \subset f^{-1}(f(M))$ and (\star) we have that

$$
\bar{M} \subset \overline{f^{-1}(f(M))} \subset f^{-1}(\overline{f(M)})
$$

Now applying f on both sides gives (4), $f(\bar{M}) \subset \overline{f(M)}$.
Finally, to show $(4) \Longrightarrow(3)$, Let F be closed in Y, take $E=f^{-1}(F)$.
Let $x \in \bar{E}$. Then we want to show that $x \in E$.
By (4), $f(x) \in \overline{f(E)}$. However, $\overline{f(E)}=\overline{f\left(f^{-1}(F)\right)}=\bar{F}=F=f(E)$.
So $f(x) \in F$, meaning $x \in f^{-1}(F)=E$.
Thus, $\bar{E} \subset E$, so we get that E is closed.
1.1.6 Definition. Let $f: X \rightarrow Y$ be a map between topological spaces X, Y :
(a) f is a called a "homeomorphism" if it is continuous, invertible, and $f^{-1}: Y \rightarrow X$ is also continuous.
(b) f is called "open" if for each open $U \subset X, f(U)$ is open in Y.
1.1.7 Remark. In (4), we have if f is a homeomorphism then $f(\bar{M})=\overline{f(M)}$. However, the converse is not true as the following example shows.
1.1.8 Example. Consider the projection mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $f(x, y)=y$. Then f is not a bijection. However, for any $M \subset \mathbb{R}^{2}$ we have $f(\bar{M})=\overline{f(M)}$.

On the other hand, if f is continuous and one-to-one, but f^{-1} is not continuous, then we do not necessarily get equality in (4):
1.1.9 Example. Let $I:(\mathbb{R}, D) \rightarrow(\mathbb{R}, d)$ be the identity map, where D stands for the discrete metric, and d stands for the usual metric, then wth respect to $D, B_{1}(0)=\{0\}$ and thus $I\left(\overline{B_{1}(0)}\right)=I\left(B_{1}(0)\right)=\{0\} \subsetneq \overline{I\left(B_{1}(0)\right)}=\overline{B_{1}(0)}=\bar{B}_{1}(0)$.
1.1.10 Lemma. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be continuous, then so is $g \circ f: X \rightarrow Z$.

Proof. Follows directly from the definition and taking inverse images twice.
1.1.11 Lemma. Let $f: X \rightarrow Y$ be continuous and invertible, then f is open iff it is a homeomorphism.

Proof. Follows straightly from the definition.
1.1.12 Definition. Let X, Y be normed vector spaces and $A: X \rightarrow Y$ be linear. We define the operator norm of A by

$$
\|A\|=\sup \{\|A x\|:\|x\| \leq 1\} \in[0, \infty]
$$

The map A is called "bounded" if $\|A\|<\infty$. We write $\mathcal{B}(X, Y)$ for the set of all such linear maps.
1.1.13 Lemma. (a) $(\mathcal{B}(X, Y),\|\cdot\|)$ is a normed vector space.
(b) If $A \in \mathcal{B}(X, Y), x \in X$, then
$\|A x\| \leq\|A\| \cdot\|x\|$, and $\|A\|=\inf \{c>0: \forall x \in X,\|A x\| \leq c\|x\|\}$

Proof. (a) Follows straightly from the definition.
(b) For the first inequality we have

$$
\left\|A\left(\frac{x}{\|x\|}\right)\right\| \leq \sup \{\|A y\|:\|y\| \leq 1\}=\|A\| \text { therefore by linearity }
$$

$$
\|A x\| \leq\|A\| \cdot\|x\|
$$

To see the second inequality, let $\left\{x_{j}\right\}_{j \in \mathbb{N}}$ be s.t. $\left\|x_{j}\right\| \leq 1$ for each $j \in \mathbb{N}$, and $\left\|A x_{j}\right\| \rightarrow$ $\|A\|^{4}$. Hence, if there is positive C^{5} for which $\|A x\| \leq C\|x\|$ for each $x \in X$, then in particular $\left\|A x_{j}\right\| \leq C\left\|x_{j}\right\|$ for each $j \in \mathbb{N}$, and therefore

[^1]$$
\|A\|=\lim _{j \rightarrow \infty}\left\|A x_{j}\right\| \leq \lim \sup _{j \rightarrow \infty} C\left\|x_{j}\right\| \leq C
$$

Consequently, by taking infimum over all such positive C we have,

$$
\|A\| \leq \inf \{C>0: \forall x \in X,\|A x\| \leq C\|x\|\}
$$

Next, by $\|A x\| \leq\|A\| .\|x\|$ for all $x \in X$, taking $C=\|A\|$, we have: $\inf \{C>0: \forall x \in X,\|A x\| \leq C\|x\|\} \leq\|A\|$,

So equality hold.

The following example show that in an arbitrary metric space we do not necessarily have, "The closure of unit ball" = "The closed unit ball".
1.1.14 Example. Take $X=\mathbb{R}$ with the discrete metric, i.e. $d(x, y)=\delta(x, y)$, then:
$B_{1}(0)=\{0\}$, therefore $\overline{B_{1}(0)}=\{0\}$. But $\bar{B}_{1}(0)=\mathbb{R}$. Therefore $\overline{B_{1}(0)} \subsetneq \bar{B}_{1}(0)$.

However, in normed spaces this pathological type of example does not occur.
1.1.15 Proposition. In a normed vector space X, we always have $\overline{B_{1}(0)}=\bar{B}_{1}(0)$.

Proof. (1) $\overline{B_{1}(0)} \subset \bar{B}_{1}(0)$.
Since $B_{1}(0) \subset \bar{B}_{1}(0)$, and $\bar{B}_{1}(0)$ is closed, by the minimality of the closure, $\overline{B_{1}(0)} \subset \bar{B}_{1}(0)$.
(2) $\bar{B}_{1}(0) \subset \overline{B_{1}(0)}$.

We show if $x \in \bar{B}_{1}(0)$ then $x \in \overline{B_{1}(0)}$. If $\|x\|<1$ then we have nothing to show. Next, let $x \in \bar{B}_{1}(0) \backslash B_{1}(0)$, so $\|x\|_{X}=1$. Then the sequence $x_{n}:=(1-1 / n) x$ is in $B_{1}(0)$, and converges to x in the norm topology of X. Therefore $x \in \overline{B_{1}(0)}$, which completes the proof.
1.1.16 Theorem. Given a linear map $A: X \rightarrow Y$ between normed vector spaces, TFAE:
(1) A is continuous.
(2) A is bounded.
(3) A is continuous at 0 .

Proof. To distinguish balls in different spaces, we write $B_{r}^{X}(p)$ for a ball in X, and $B_{r}^{Y}(p)$ for a ball in Y.
(1) $\Longrightarrow(2)$ Given (1), $B_{1}^{Y}(0)$, then by continuity $A^{-1}\left(B_{1}^{Y}(0)\right)=V$ is open in X, and $0 \in V$, so there is $r>0$ s.t. $A\left(B_{r}^{X}(0)\right) \subset B_{1}^{Y}(0)$. By scaling/ linearity, $A\left(B_{1}^{X}(0)\right) \subset B_{\frac{1}{r}}^{Y}(0)$.

Using the Characterization of continuity with closures, $A\left(\overline{B_{1}^{X}(0)}\right) \subset \overline{A\left(B_{1}^{X}\right)(0)}$. However, by the previous remark we also have:
$\overline{B_{1}^{X}(0)}=\bar{B}_{1}^{X}(0)$, and $\overline{B_{\frac{1}{r}}^{Y}(0)}=\bar{B}_{\frac{1}{r}}^{Y}(0)$
Therefore $A\left(\bar{B}_{1}^{X}(0)\right) \subset \bar{B}_{\frac{1}{r}}^{Y}(0)$ and we conclude that $\|A\| \leq \frac{1}{r}$, so A is bounded.
(2) \Longrightarrow (3) Next, assume A is bounded, therefore $\|A\| \leq \frac{1}{r}$ for some $r>0$. Let $\varepsilon>0$ be given. Consider $B_{\varepsilon}^{Y}(0)$, then take $\delta=\frac{r \varepsilon}{2}$. Then, by scaling we get
$A\left(B_{\delta}^{X}(0)\right) \subset A\left(\bar{B}_{\delta}^{X}(0)\right)=\delta A\left(\bar{B}_{1}^{X}(0)\right) \subset($ by assumption $) \delta \bar{B}_{1 / r}^{Y}(0)=\bar{B}_{\varepsilon / 2}^{Y}(0) \subset B_{\varepsilon}^{Y}(0)$.
So A is continuous at 0 .
(3) \Longrightarrow (1) Finally, let A be continuous at 0 . We want to show it is continuous at each $x \in X$, and hence continuous.

Given $x \in X$, and $B_{\varepsilon}^{Y}(A x)$, take $\delta>0$ s.t. $A\left(B_{\delta}^{X}(0)\right) \subset B_{\varepsilon}^{Y}(0)$. By linearity, we have:
$A\left(B_{\delta}^{X}(x)\right)=A\left(x+B_{\delta}^{X}(0)\right)=A x+A\left(B_{\delta}^{X}(0)\right) \subset A x+B_{\varepsilon}^{Y}(0)=B_{\varepsilon}^{Y}(A x)$
Hence A is continuous at x.

[^0]: ${ }^{1}$ taking inverse is compatible with all set-theoretic operations.
 ${ }^{2}$ The same result holds for semi-metric spaces.
 ${ }^{3}$ If $f^{-1}(U)=\emptyset$, then by definition it is still open in X !

[^1]: ${ }^{4}$ Existance of such a sequence follows from the definition of supremum.
 ${ }^{5}$ Since A is bounded such a positive C exists.

