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1 Essentials of Topology

1.1 Continuity

Next, we recall continuity

1.1.1 Definition. Let X, Y be topological spaces and z € X. Amap f: X — Y is continuous
at z, if for each neighborhood U of f(x), f~!(U)! is a neighborhood of .

For the purpose of proving results we can weaken the above condition to the following:

1.1.2 Remark. (a) f is continuous at z iff for each neighborhood U of f(x) there exists a
neighborhood V' of z s.t. f(V) C U.

(b) If X,Y are metric spaces, then f : X — Y is continuous at z iff for every ¢ > 0 there
exist a 0 > 0s.t. f(Bs(z)) C B(f(x)).2

1.1.3 Lemma (composition rule). If f : X — Y is continuous at x and g : Y — Z is continuous
at f(z), thengo f : X — Z is continuous at x.

Proof. Follows from definition of continuity and taking inverse image twice. O

1.1.4 Definition. Let X, Y be topological spaces, then f : X — Y is continuous if for each
open set U C Y, the preimage, f~!(U) is open in X .3

1.1.5 Theorem. Let X,Y be topological spaces and f : X — Y, then TFAE
(1) f is continuous.
(2) f is continuous at every x € X.
(3) If F is closed in Y, then f~(F) is closed in X .

(4) For every M C X, we have that f(M) C f(M)

Ltaking inverse is compatible with all set-theoretic operations.
2The same result holds for semi-metric spaces.
3If f~1(U) = 0, then by definition it is still open in X!
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Proof. (1) <= (2) is immediate,

(1) = (3),
Let I be closed in Y, then U = Y \ F is open in Y, then by (1) f~!(U) is open in X, but
X = f~YU)U f7Y(F) therefore f~1(F)= X\ f~}(U) is closed in X.

(3) = (1) The argument is similar.
To prove (3) = (4), we first show that (3) = (4),
(4)Forany Q C Y, f1(Q) C f1(Q).

To this end, from Q C Q we have f~1(Q) C f~1(Q) and since f~1(Q) is a closed subset of

X by (3), F7HQ) C fYQ) = f~1(Q) and we can take the closure on the left-hand side while
the inequality remains intact.

To get from (4') to (4), consider M C X, and let Q = f(M), then by (4):

M) € fH(F(M) (%)

From M C f~'(f(M)) and (x) we have that

M c fAH(f(M) C f7H(f(M))
Now applying f on both sides gives (4), f(M) C f(M).
Finally, to show (4) = (3), Let F be closed in Y, take E' = f~!(F).

Let x € E. Then we want to show that z € E.

By (4), f(z) € f(E). However, f(E) = f(f}(F)) =F = F = f(E).
So f(z) € F, meaningz € f~1(F)=E.

Thus, E C E, so we get that E is closed. O
1.1.6 Definition. Let f : X — Y be a map between topological spaces X,Y:

(a) f is a called a "homeomorphism” if it is continuous, invertible, and f1:Y — X is also
continuous.

(b) fis called "open” if for each open U C X, f(U) is open in Y.

1.1.7 Remark. In (4), we have if f is a homeomorphism then f(M) = f(M). However, the
converse is not true as the following example shows.



1.1.8 Example. Consider the projection mapping f : R* — R where f(x,y) = y. Then f is not

a bijection. However, for any M C R? we have f(M) = f(M).

On the other hand, if f is continuous and one-to-one, but f~! is not continuous, then we do
not necessarily get equality in (4):

1.1.9 Example. Let I : (R,D) — (R, d) be the identity map, where D stands for the dis-
crete metric, and d stands for the usual metric, then wth respect to D, B;(0) = {0} and thus
1(B1(0)) = 1(B1(0)) = {0} € I(B1(0)) = B1(0) = B1(0).

1.1.10 Lemma. Let f: X — Y, g:Y — Z be continuous, thensoisgo f : X — Z.
Proof. Follows directly from the definition and taking inverse images twice. O]

1.1.11 Lemma. Let f : X — Y be continuous and invertible, then f is open iff it is a
homeomorphism.

Proof. Follows straightly from the definition. ]

1.1.12 Definition. Let X,Y be normed vector spaces and A : X — Y be linear. We define the
operator norm of A by
[ All = sup {[|Az[ - [|z]| < 1} € [0, oc]

The map A is called "bounded” if ||A|| < co. We write B(X,Y") for the set of all such linear
maps.

1.1.13 Lemma. (a) (B(X,Y),||.||) is a normed vector space.

(b) If Ac B(X,Y), x € X, then
|Az|| < ||Al.[[x]|, and
|A]| = inf{c > 0:Vx € X, ||Az| < ¢||z||}

Proof.  (a) Follows straightly from the definition.

(b) For the first inequality we have
[AGEI < sup{[[Ayl| : [ly]l < 1} = [|A]| therefore by linearity
[Az] < || A]l-ll=

To see the second inequality, let {z;};en be s.t. ||z;|| <1 for each j € N, and ||Az;|| —
|A||*. Hence, if there is positive C° for which ||Ax|| < C||z|| for each x € X , then in
particular |[Az;|| < C||z;|| for each j € N, and therefore

#Existance of such a sequence follows from the definition of supremum.
5Since A is bounded such a positive C' exists.



[A]] = im0 [ Az]| < limsup; , Clla;|| < C

Consequently, by taking infimum over all such positive C' we have,
|A]| < inf{C > 0:Vz € X, ||Az| < C|z||}

Next, by ||Az| < ||A]].||z|| for all z € X, taking C' = ||A]|, we have:
inf{C > 0:Vx e X, |Az| < C|z||} < ||A],
So equality hold.
O
The following example show that in an arbitrary metric space we do not necessarily have,

"The closure of unit ball” = " The closed unit ball".

1.1.14 Example. Take X = R with the discrete metric, i.e. d(z,y) = d(x,y), then:

B1(0) = {0}, therefore B;(0) = {0}. But B,(0) = R. Therefore B;(0) C B;(0).

However, in normed spaces this pathological type of example does not occur.

1.1.15 Proposition. /n a normed vector space X, we always have B,(0) = B,(0).

Proof. (1) B1(0) c B(0).

Since B1(0) C B1(0), and B;(0) is closed, by the minimality of the closure, B;(0) C B;(0).

(2) Bi(0) C Bi(0).

We show if = € B1(0) then x € B1(0). If ||z|| < 1 then we have nothing to show. Next,
let z € B1(0) \ B1(0), so ||z||x = 1. Then the sequence z,, := (1 — 1/n)x is in B;(0),
and converges to z in the norm topology of X. Therefore x € B;(0), which completes the
proof.

O
1.1.16 Theorem. Given a linear map A : X — Y between normed vector spaces, TFAE:
(1) A is continuous.
(2) A is bounded.
(3) A is continuous at 0.

Proof. To distinguish balls in different spaces, we write BX(p) for a ball in X, and BY (p) for a
ball in Y.



1) = (2)

Given (1), BY(0), then by continuity A=*(B} (0)) = V is open in X, and 0 € V, so there
is > 0st A(BX(0)) C BY(0). By scaling/ linearity, A(B;%(0)) C BY (0).

Using the Characterization of continuity with closures, A(B;X(0)) C A(B;)(0). However,
by the previous remark we also have:

B (0) = By (0), and BY (0) = B1 (0)

Therefore A(Ef(O)) C EE(O) and we conclude that [|A]| <1, so A is bounded.

Next, assume A is bounded, therefore ||A|| < I for some r > 0. Let e > 0 be given.
Consider BY (0), then take d = £. Then, by scaling we get

X —X —X : —=Y =Y v
A(B;5 (0)) C A(B; (0)) = 0A(B; (0)) C (by assumption) 0B, ,,(0) = B, ,(0) C B (0).

So A is continuous at 0.

Finally, let A be continuous at 0. We want to show it is continuous at each = € X, and
hence continuous.

Given z € X, and BY (Az), take § > 0 s.t. A(B(0)) € BY(0). By linearity, we have:
A(Bf(z)) = A(z + Bf(0)) = Az + A(B¥(0)) C Az + BY (0) = BY (Axz)

Hence A is continuous at z.



