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1 Essentials of Topology

1.1 Continuity

Next, we recall continuity

1.1.1 Definition. Let X, Y be topological spaces and x ∈ X. A map f : X → Y is continuous
at x, if for each neighborhood U of f(x), f−1(U)1 is a neighborhood of x.

For the purpose of proving results we can weaken the above condition to the following:

1.1.2 Remark. (a) f is continuous at x iff for each neighborhood U of f(x) there exists a
neighborhood V of x s.t. f(V ) ⊂ U .

(b) If X, Y are metric spaces, then f : X → Y is continuous at x iff for every ε > 0 there
exist a δ > 0 s.t. f(Bδ(x)) ⊂ Bε(f(x)).
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1.1.3 Lemma (composition rule). If f : X → Y is continuous at x and g : Y → Z is continuous
at f(x), then g ◦ f : X → Z is continuous at x.

Proof. Follows from definition of continuity and taking inverse image twice.

1.1.4 Definition. Let X, Y be topological spaces, then f : X → Y is continuous if for each
open set U ⊂ Y , the preimage, f−1(U) is open in X.3

1.1.5 Theorem. Let X, Y be topological spaces and f : X → Y , then TFAE

(1) f is continuous.

(2) f is continuous at every x ∈ X.

(3) If F is closed in Y , then f−1(F ) is closed in X.

(4) For every M ⊂ X, we have that f(M) ⊂ f(M)

1taking inverse is compatible with all set-theoretic operations.
2The same result holds for semi-metric spaces.
3If f−1(U) = ∅, then by definition it is still open in X!
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Proof. (1) ⇐⇒ (2) is immediate,

(1) =⇒ (3),
Let F be closed in Y , then U = Y \ F is open in Y , then by (1) f−1(U) is open in X, but
X = f−1(U) ∪ f−1(F ) therefore f−1(F ) = X \ f−1(U) is closed in X.

(3) =⇒ (1) The argument is similar.

To prove (3) =⇒ (4), we first show that (3) =⇒ (4′),

(4′) For any Q ⊂ Y , f−1(Q) ⊂ f−1(Q).

To this end, from Q ⊂ Q we have f−1(Q) ⊂ f−1(Q) and since f−1(Q) is a closed subset of

X by (3), f−1(Q) ⊂ f−1(Q) = f−1(Q) and we can take the closure on the left-hand side while
the inequality remains intact.

To get from (4′) to (4), consider M ⊂ X, and let Q = f(M), then by (4′):

f−1(f(M)) ⊂ f−1(f(M)) (?)

From M ⊂ f−1(f(M)) and (?) we have that

M ⊂ f−1(f(M)) ⊂ f−1(f(M))

Now applying f on both sides gives (4), f(M) ⊂ f(M).

Finally, to show (4) =⇒ (3), Let F be closed in Y , take E = f−1(F ).

Let x ∈ E. Then we want to show that x ∈ E.

By (4), f(x) ∈ f(E). However, f(E) = f(f−1(F )) = F = F = f(E).

So f(x) ∈ F , meaning x ∈ f−1(F ) = E.

Thus, E ⊂ E, so we get that E is closed.

1.1.6 Definition. Let f : X → Y be a map between topological spaces X, Y :

(a) f is a called a ”homeomorphism” if it is continuous, invertible, and f−1 : Y → X is also
continuous.

(b) f is called ”open” if for each open U ⊂ X, f(U) is open in Y .

1.1.7 Remark. In (4), we have if f is a homeomorphism then f(M) = f(M). However, the
converse is not true as the following example shows.
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1.1.8 Example. Consider the projection mapping f : R2 → R where f(x, y) = y. Then f is not
a bijection. However, for any M ⊂ R2 we have f(M) = f(M).

On the other hand, if f is continuous and one-to-one, but f−1 is not continuous, then we do
not necessarily get equality in (4):

1.1.9 Example. Let I : (R, D) → (R, d) be the identity map, where D stands for the dis-
crete metric, and d stands for the usual metric, then wth respect to D, B1(0) = {0} and thus
I(B1(0)) = I(B1(0)) = {0} ( I(B1(0)) = B1(0) = B1(0).

1.1.10 Lemma. Let f : X → Y , g : Y → Z be continuous, then so is g ◦ f : X → Z.

Proof. Follows directly from the definition and taking inverse images twice.

1.1.11 Lemma. Let f : X → Y be continuous and invertible, then f is open iff it is a
homeomorphism.

Proof. Follows straightly from the definition.

1.1.12 Definition. Let X, Y be normed vector spaces and A : X → Y be linear. We define the
operator norm of A by

‖A‖ = sup {‖Ax‖ : ‖x‖ ≤ 1} ∈ [0,∞]

The map A is called ”bounded” if ‖A‖ < ∞. We write B(X, Y ) for the set of all such linear
maps.

1.1.13 Lemma. (a) (B(X, Y ), ‖.‖) is a normed vector space.

(b) If A ∈ B(X, Y ), x ∈ X, then
‖Ax‖ ≤ ‖A‖.‖x‖, and
‖A‖ = inf{c > 0 : ∀x ∈ X, ‖Ax‖ ≤ c‖x‖}

Proof. (a) Follows straightly from the definition.

(b) For the first inequality we have

‖A( x
‖x‖)‖ ≤ sup{‖Ay‖ : ‖y‖ ≤ 1} = ‖A‖ therefore by linearity

‖Ax‖ ≤ ‖A‖.‖x‖

To see the second inequality, let {xj}j∈N be s.t. ‖xj‖ ≤ 1 for each j ∈ N, and ‖Axj‖ →
‖A‖4. Hence, if there is positive C5 for which ‖Ax‖ ≤ C‖x‖ for each x ∈ X , then in
particular ‖Axj‖ ≤ C‖xj‖ for each j ∈ N, and therefore

4Existance of such a sequence follows from the definition of supremum.
5Since A is bounded such a positive C exists.
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‖A‖ = limj→∞ ‖Axj‖ ≤ lim supj→∞C‖xj‖ ≤ C

Consequently, by taking infimum over all such positive C we have,

‖A‖ ≤ inf{C > 0 : ∀x ∈ X, ‖Ax‖ ≤ C‖x‖}

Next, by ‖Ax‖ ≤ ‖A‖.‖x‖ for all x ∈ X, taking C = ‖A‖, we have:

inf{C > 0 : ∀x ∈ X, ‖Ax‖ ≤ C‖x‖} ≤ ‖A‖,
So equality hold.

The following example show that in an arbitrary metric space we do not necessarily have,
”The closure of unit ball” = ”The closed unit ball”.

1.1.14 Example. Take X = R with the discrete metric, i.e. d(x, y) = δ(x, y), then:

B1(0) = {0}, therefore B1(0) = {0}. But B1(0) = R. Therefore B1(0) ( B1(0).

However, in normed spaces this pathological type of example does not occur.

1.1.15 Proposition. In a normed vector space X, we always have B1(0) = B1(0).

Proof. (1) B1(0) ⊂ B1(0).

Since B1(0) ⊂ B1(0), and B1(0) is closed, by the minimality of the closure, B1(0) ⊂ B1(0).

(2) B1(0) ⊂ B1(0).

We show if x ∈ B1(0) then x ∈ B1(0). If ‖x‖ < 1 then we have nothing to show. Next,
let x ∈ B1(0) \ B1(0), so ‖x‖X = 1. Then the sequence xn := (1 − 1/n)x is in B1(0),
and converges to x in the norm topology of X. Therefore x ∈ B1(0), which completes the
proof.

1.1.16 Theorem. Given a linear map A : X → Y between normed vector spaces, TFAE:

(1) A is continuous.

(2) A is bounded.

(3) A is continuous at 0.

Proof. To distinguish balls in different spaces, we write BX
r (p) for a ball in X, and BY

r (p) for a
ball in Y .

4



(1) =⇒ (2) Given (1), BY
1 (0), then by continuity A−1(BY

1 (0)) = V is open in X, and 0 ∈ V , so there
is r > 0 s.t. A(BX

r (0)) ⊂ BY
1 (0). By scaling/ linearity, A(BX

1 (0)) ⊂ BY
1
r

(0).

Using the Characterization of continuity with closures, A(BX
1 (0)) ⊂ A(BX

1 )(0). However,
by the previous remark we also have:

BX
1 (0) = B

X

1 (0), and BY
1
r

(0) = B
Y
1
r
(0)

Therefore A(B
X

1 (0)) ⊂ B
Y
1
r
(0) and we conclude that ‖A‖ ≤ 1

r
, so A is bounded.

(2) =⇒ (3) Next, assume A is bounded, therefore ‖A‖ ≤ 1
r

for some r > 0. Let ε > 0 be given.
Consider BY

ε (0), then take δ = rε
2

. Then, by scaling we get

A(BX
δ (0)) ⊂ A(B

X

δ (0)) = δA(B
X

1 (0)) ⊂ (by assumption) δB
Y

1/r(0) = B
Y

ε/2(0) ⊂ BY
ε (0).

So A is continuous at 0.

(3) =⇒ (1) Finally, let A be continuous at 0. We want to show it is continuous at each x ∈ X, and
hence continuous.

Given x ∈ X, and BY
ε (Ax), take δ > 0 s.t. A(BX

δ (0)) ⊂ BY
ε (0). By linearity, we have:

A(BX
δ (x)) = A(x+BX

δ (0)) = Ax+ A(BX
δ (0)) ⊂ Ax+BY

ε (0) = BY
ε (Ax)

Hence A is continuous at x.

5


