
Functional Analysis, Math 7320
Lecture Notes from August 30 2016

taken by Yaofeng Su

1 Essentials of Topology

1.1 Continuity

Next we recall a stronger notion of continuity:

1.1.1 Definition. Let (X, dX), (Y, dY ) be metric spaces, A map f : X → Y is called uniformly
continuous, if

∀ε > 0,∃δ > 0, for all p, q ∈ X, dX(p, q) < δ,

we have
dY (f(p), f(q)) < ε.

1.1.2 Theorem. Let X, Y be normed spaces, and dX , dY are the metric induced by the norm
of X, Y , If A : X → Y is linear continuous map, then A is uniformly continuous.

Proof. Two steps to verify uniform continuity:

(1) Since A is continuous at 0, so

∀ε > 0∃δ > 0, s.th.∀p ∈ X, dX(p, 0) < δ,

we have

dY (A(p), 0) < ε.

(2) We use this to prove uniform continuity: Let ε > 0 be given and choose δ > 0 as in (1),
then

∀p, q ∈ X, dX(p, q) < δ,

we have z = p− q satisfies dX(z, 0) < δ, so dY (A(z), 0) < ε . Now using the linearity of A
gives

dY (A(p), A(q)) = ‖A(p− q)‖Y = dY (A(p− q), 0) < ε

so A is uniformly continuous.
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Next we make precise in which way vector space and norm structures are compatible:

1.1.3 Lemma. Let X, Y be norm space, then ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y is a norm.

Proof. We verify three properties of norm:

(1) Verify positive definiteness:

‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y = 0,

implies by ‖x‖X ≥ 0 and ‖y‖Y ≥ 0 and the positive definiteness of the norms on X and Y

x = 0, y = 0.

so
(x, y) = 0.

(2) Verify scaling property from the homogeneity of the norms on X and Y :

‖λ(x, y)‖X×Y = ‖λx‖X + ‖λy‖Y = |λ|(‖x‖X + ‖y‖Y ) = |λ|‖(x, y)‖X×Y .

so
‖λ(x, y)‖X×Y = |λ|‖(x, y)‖X×Y .

(3) Verify triangle inequality from that of the norms on X and Y :

‖(x, y)+(p, q)‖X×Y = ‖x+p‖X+‖y+q‖Y ≤ ‖x‖X+‖p‖X+‖y‖Y+‖q‖Y = ‖(x, y)‖X×Y+‖(p, q)‖X×Y .

so
‖(x, y) + (p, q)‖X×Y ≤ ‖(x, y)‖X×Y + ‖(p, q)‖X×Y .

this completes the proof.

1.1.4 Theorem. Let (X, ‖.‖) be a norm space, then f : X×X → X, (x, y)→ x+y is uniformly
continuous. Scalar product: • : K × X → X : (λ, x) → λx is continuous but not uniformly
continuous.

Proof. We prove this three statements:

(1) Since For ε > 0, let δ = ε > 0, then ∀x, p ∈ X, y, q ∈ Y,with ‖(x, y) − (p, q)‖X×Y =
‖x− p‖X + ‖y − q‖Y < δ, we have

‖(x+ y)− (p+ q)‖X×Y ≤ ‖x− p‖X + ‖y − q‖Y < δ = ε.

so f is uniformly continuous.
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(2) Since it is in metric space, so we only need to verify the sequence convergence:

let λn, λ0 ∈ K, xn, x0 ∈ X, with xn → x0, λn → λ0.

by convergence of xn, we have for

ε = 1, ∃n0 > 0 s.th. ∀n > n0, ‖xn − x0‖ ≤ 1.

so
∀n > n0, ‖xn‖ ≤ ‖xn − x0‖+ ‖x0‖ ≤ 1 + ‖x0‖.

Hence, we can set K = max{‖xn‖, ‖x0‖+ 1, n ≤ n0}, then by convergence of λn, xn, we
have

∀ε,∃n1 ∈ N s.th. ∀n > n1, |λn − λ0| ≤ ε/2K.

and
∀ε,∃n2 > n1,∀n > n2, ‖xn − x0‖ ≤ ε/2(|λ0|+ 1).

so
∀ε,∃n2,∀n > n2,

|λnxn − λ0x0| ≤ |(λn − λ0)|‖xn‖+ |λ0|‖(xn − x0)‖ ≤ ε/2 + ε/2 = ε.

this completes the proof.

(3) Scalar product is not uniform. Assume this were the case, then for a given ε > 0, there
would be δ > 0 such that any pair of points at distance at most δ would be mapped to a
pair at a distance at most ε. Take x0 a non zero element, and let ε = 2‖x0‖. Then take
λ1,n = n, λ2,n = n+ 1/n, x1,n = nx0, x2,n = nx0, then

‖(λ1,n, x1,n)− (λ2,n, x2,n))‖ = 1/n→ 0,

which becomes smaller than any δ > 0 but for any n

λ1,nx1,n − λ2,nx2,n = −x0

and hence ‖λ1,nx1,n − λ2,nx2,n‖ = ‖x0‖ > ε. By contradiction, the scalar product is not
uniformly continuous.

1.2 Completeness

Next we talk about completeness:

1.2.5 Definition. Let (X, τ) be topological space, (xn)n∈N ⊆ X, we say xn → x in X, if for
each U ∈ Ux(neighourhood of x), ∃n0 ∈ N s.t. ∀n > n0, xn ∈ U .

1.2.6 Remark. For metric spaces, this implies the usual form of convergence:

∀ε,∃n0 ∈ N,∀n > n0, d(xn, x) < ε.
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For metric space, we will have a weaker notion of ’convergence’ called Cauchy property.

1.2.7 Definition. Let (X, d) be metric space, a sequence (xn)n∈N is called Cauchy sequence if:

∀ε,∃n0 ∈ N,∀n,m > n0, d(xn, xm) ≤ ε.

1.2.8 Remark. A convergence sequence is Cauchy by triangle inequality:
if

∀ε,∃n0,∀n > n0, d(xn, x) < ε/2.

then
∀ε,∃n0,∀m,n > n0, d(xn, xm) ≤ d(xn, x) + d(xm, x) < ε/2 + ε/2 = ε.

but converse is not true for some spaceX like open interval equipped with usual metric.

1.2.9 Definition. (X, d) be metric space is called complete if each Cauchy sequence converges
in X. A complete normed space is called Banach Space.

1.2.10 Remark. A subset of a complete metric space is completeness iff it is closed(sees next
lemma for proof).

1.2.11 Lemma. Let (X, d) be complete metric space and Y ⊆ X, then (Y, d) is complete iff Y
is closed in X

Proof. We prove it by two steps:

(1) if Y is a closed in X, cauchy sequence (xn)n∈N ⊂ Y .

so
(xn)n∈N ⊂ X.

Since X is complete,
∃x ∈ X, xn → x.

Since Y is closed, so the limit
x ∈ Y.

so Y is complete.

(2) Assume Y is complete and take any x ∈ Y . Then there is a sequence (xn)n∈N in Y such
that

xn → x ∈ X

Since this sequence converges in X, then

∀ε,∃n0 ∈ N,∀n > n0, d(xn, x) ≤ ε/2.

then
∀ε,∃n0 ∈ N,∀n,m > n0, d(xn, xm) ≤ d(xm, x) + d(xn, x) ≤ ε.

so this sequence is also cauchy in Y .

So it is Cauchy in Y and by the completeness of Y , it converges in Y to the limit x ∈ Y .
Thus the limit x ∈ Y , so Y is closed.
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1.2.12 Example. We give some concrete examples:

(a) K = Cor R are complete metric space.

(b) Q ⊂ R is not complete.

(c) (Kn, ‖.‖p), 1 ≤ p ≤ ∞ is Banach space.

(d) lp, 1 ≤ p ≤ ∞ with norm ‖x‖p = (
∑
|xj|p)1/p is a Banach Space as well as c0 ⊂ l∞

(e) Bounded function space B(X,K) is a Banach Space equipped with ‖.‖∞.

(f) if X is a norm space, Y is Banach Space, then B(X, Y ) is Banach Space with the operator
norm.

Proof. Now we prove all of them:

(a) For number field K like C,R, since C ∼= R2, so it deduced to the case of R, but I do
not how to prove R is complete because R is originally defined as the equivalence class of
cauchy sequence in Q, that is, R is defined as the completeness of Q.

(b) We prove that Q is not closed in R. Every irrational number can be expressed as binary
form:

x =
∞∑
j=1

ai/2
i, ai = 0/1.

so consider the finite term:

xn =
n∑

j=1

ai/2
i, ai = 0/1.

we note that xn → x and xn ∈ Q, which complete the proof.

(c) This is special case of (d), so we turn to (d) first. (How is (c) embedded in (d)?) You
need to use that it is a closed subset to relegate it to (d).

(d) For p <∞, first we prove it is a norm space.

(1) if ‖x‖p = (
∑∞

j=1 |xn,j)p|1/p = 0, then ∀n, xn = 0, so x = 0.

(2) ‖λx‖p = (
∑∞

j=1 |λxn,j)p|1/p = |λ|‖x‖p.

(3) by Minkowskii inequality,

‖x+ y‖p = (
∞∑
j=1

|xn,j + yn,j|p)1/p ≤ (
∞∑
j=1

|xn,j|p)1/p + (
∞∑
j=1

|yn,j|p)1/p = ‖x‖p + ‖y‖p.
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this complete the proof of norm properties.

We turn to completeness:

let (xn)n∈N ∈ lp is a cauchy sequence, that is:

∀ε > 0,∃n0 ∈ N,∀n,m > n0, (
∞∑
j=1

|xn,j − xm,j|p)1/p < ε/2.

so for each j, we have

∀ε > 0,∃n0 ∈ N,∀n,m > n0, (|xn,j − xm,j|p)1/p < ε/2.

that is, so for each j, (xn,j)n∈N is cauchy sequence. so

∃yj, xn,j → yj.

For fixed n ≥ n0, we apply Fatou lemma to

(
∞∑
j=1

|xn,j − xm,j|p)1/p < ε.

when m→∞,

(
∞∑
j=1

|xn,j − yj|p)1/p = (
∞∑
j=1

lim
m→∞

|xn,j − xm,j)
p|1/p 6 lim

m→∞
(
∞∑
j=1

|xn,j − xm,j|p)1/p ≤ ε/2.

that is
∀ε > 0,∃n0 ∈ N,∀n > n0, (

∑
j

|xn,j − yj|p)1/p ≤ ε/2 < ε.

Moreover, by Minkowski’s inequality:

(
∑
j

|yj|p)1/p ≤ (
∑
j

|xn0,j − yj|p)1/p + (
∑
j

|xn0,j|p)1/p < ε+ (
∑
j

|xn0,j|p)1/p <∞.

so y ∈ `p.

Thus, we have shown in lp,
xn → y.

This complete the proof of completeness for case p <∞.

A similar proof can be applied to the case when p =∞:

For p =∞, first we prove it is a norm space.

(1) if ‖x‖∞ = supn |xn| = 0, then ∀n, xn = 0, so x = 0.

(2) ‖λx‖∞ = supn |λxn| = |λ|‖x‖∞.
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(3) triangle inequality:

‖x+ y‖∞ = sup
n
|xn + yn| ≤ sup

n
|xn|+ sup

n
|yn| = ‖x‖∞ + ‖y‖∞

this complete the proof of norm properties.

We turn to completeness:

let (xn)n∈N ∈ l∞ is a cauchy sequence, that is:

∀ε > 0, ∃n0 ∈ N, ∀n,m > n0, sup
j
|xn,j − xm,j| < ε/2.

so for each j, we have

∀ε > 0,∃n0 ∈ N,∀n,m > n0, |xn,j − xm,j| < ε/2.

that is, so for each j, (xn,j)n∈N is cauchy sequence. so

∃yj, xn,j → yj.

For fixed n ≥ n0, we let m→∞,

∀ε,∃n0,∀n > n0,∀j, |xn,j − yj| = lim
m→∞

|xn,j − xm,j| ≤ ε/2 < ε.

that is
∀ε > 0, ∃n0 ∈ N, ∀n > n0, sup

j
|xn,j − yj| ≤ ε/2 < ε.

Moreover, by triangular inequality:

sup
j
|yj| ≤ sup

j
|xn0,j − yj|+ sup

j
|xn0,j| < ε+ sup

j
|xn0,j| <∞.

so y ∈ `∞.

Thus, we have shown in l∞,
xn → y.

This complete the proof of completeness for case p =∞.

so l∞ is also complete.

c0 is closed with respect to the norm in l∞:

Assume a sequence in c0 and a limit in l∞

xn → x.

that is
∀ε,∃n0, ∀n > n0,∀j, |xn,j − xj| < ε/2.

Fix n ≥ n0 then letting j →∞, we have by limj→∞ xn,j = 0 that

lim
j→∞
|xj| = lim

j→∞
|xn,j − xj| ≤ ε/2 < ε.
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so x ∈ c0, that is c0 is a closed space in l∞. Consequently, c0 is also Banach Space.

Returning to (c), consider Kn ⊂ lp i.e. Kn = {x ∈ lp : xj = 0, j ≥ n+ 1}.
assume in lp, we have xn ∈ Kn → x, that is:

∀ε > 0,∃n0 ∈ N,∀n,m > n0, (
∑
j

|xn,j − xj|p)1/p < ε/2.

then we have:

∀ε > 0,∃n0 ∈ N,∀n,m > n0, (
∑

j≥n+1

|xj|p)1/p = (
∑

j≥n+1

|xn,j − xj|p)1/p < ε/2.

that means:
xj = 0, j ≥ n+ 1.

so x ∈ Kn i.e. Kn is closed subspace in lp, so Kn is complete.
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