Functional Analysis, Math 7320
 Lecture Notes from August 302016

taken by Yaofeng Su

1 Essentials of Topology

1.1 Continuity

Next we recall a stronger notion of continuity:
1.1.1 Definition. Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces, A map $f: X \rightarrow Y$ is called uniformly continuous, if

$$
\forall \epsilon>0, \exists \delta>0, \text { for all } p, q \in X, d_{X}(p, q)<\delta
$$

we have

$$
d_{Y}(f(p), f(q))<\epsilon
$$

1.1.2 Theorem. Let X, Y be normed spaces, and d_{X}, d_{Y} are the metric induced by the norm of X, Y, If $A: X \rightarrow Y$ is linear continuous map, then A is uniformly continuous.

Proof. Two steps to verify uniform continuity:
(1) Since A is continuous at 0 , so

$$
\forall \epsilon>0 \exists \delta>0, \text { s.th. } \forall p \in X, d_{X}(p, 0)<\delta,
$$

we have

$$
d_{Y}(A(p), 0)<\epsilon .
$$

(2) We use this to prove uniform continuity: Let $\epsilon>0$ be given and choose $\delta>0$ as in (1), then

$$
\forall p, q \in X, d_{X}(p, q)<\delta,
$$

we have $z=p-q$ satisfies $d_{X}(z, 0)<\delta$, so $d_{Y}(A(z), 0)<\epsilon$. Now using the linearity of A gives

$$
d_{Y}(A(p), A(q))=\|A(p-q)\|_{Y}=d_{Y}(A(p-q), 0)<\epsilon
$$

so A is uniformly continuous.

Next we make precise in which way vector space and norm structures are compatible:
1.1.3 Lemma. Let X, Y be norm space, then $\|(x, y)\|_{X \times Y}=\|x\|_{X}+\|y\|_{Y}$ is a norm.

Proof. We verify three properties of norm:
(1) Verify positive definiteness:

$$
\|(x, y)\|_{X \times Y}=\|x\|_{X}+\|y\|_{Y}=0
$$

implies by $\|x\|_{X} \geq 0$ and $\|y\|_{Y} \geq 0$ and the positive definiteness of the norms on X and Y

$$
x=0, y=0 .
$$

so

$$
(x, y)=0
$$

(2) Verify scaling property from the homogeneity of the norms on X and Y :

$$
\|\lambda(x, y)\|_{X \times Y}=\|\lambda x\|_{X}+\|\lambda y\|_{Y}=|\lambda|\left(\|x\|_{X}+\|y\|_{Y}\right)=|\lambda|\|(x, y)\|_{X \times Y} .
$$

so

$$
\|\lambda(x, y)\|_{X \times Y}=|\lambda|\|(x, y)\|_{X \times Y}
$$

(3) Verify triangle inequality from that of the norms on X and Y :

$$
\|(x, y)+(p, q)\|_{X \times Y}=\|x+p\|_{X}+\|y+q\|_{Y} \leq\|x\|_{X}+\|p\|_{X}+\|y\|_{Y}+\|q\|_{Y}=\|(x, y)\|_{X \times Y}+\|(p, q)\|_{X \times Y} .
$$

so

$$
\|(x, y)+(p, q)\|_{X \times Y} \leq\|(x, y)\|_{X \times Y}+\|(p, q)\|_{X \times Y} .
$$

this completes the proof.
1.1.4 Theorem. Let $(X,\|\|$.$) be a norm space, then f: X \times X \rightarrow X,(x, y) \rightarrow x+y$ is uniformly continuous. Scalar product: • : $\mathbb{K} \times X \rightarrow X:(\lambda, x) \rightarrow \lambda x$ is continuous but not uniformly continuous.

Proof. We prove this three statements:
(1) Since For $\epsilon>0$, let $\delta=\epsilon>0$, then $\forall x, p \in X, y, q \in Y$, with $\|(x, y)-(p, q)\|_{X \times Y}=$ $\|x-p\|_{X}+\|y-q\|_{Y}<\delta$, we have

$$
\|(x+y)-(p+q)\|_{X \times Y} \leq\|x-p\|_{X}+\|y-q\|_{Y}<\delta=\epsilon
$$

so f is uniformly continuous.
(2) Since it is in metric space, so we only need to verify the sequence convergence:
let $\lambda_{n}, \lambda_{0} \in \mathbb{K}, x_{n}, x_{0} \in X$, with $x_{n} \rightarrow x_{0}, \lambda_{n} \rightarrow \lambda_{0}$.
by convergence of x_{n}, we have for

$$
\epsilon=1, \exists n_{0}>0 \text { s.th. } \forall n>n_{0},\left\|x_{n}-x_{0}\right\| \leq 1
$$

SO

$$
\forall n>n_{0},\left\|x_{n}\right\| \leq\left\|x_{n}-x_{0}\right\|+\left\|x_{0}\right\| \leq 1+\left\|x_{0}\right\|
$$

Hence, we can set $K=\max \left\{\left\|x_{n}\right\|,\left\|x_{0}\right\|+1, n \leq n_{0}\right\}$, then by convergence of λ_{n}, x_{n}, we have

$$
\forall \epsilon, \exists n_{1} \in \mathbb{N} \text { s.th. } \forall n>n_{1},\left|\lambda_{n}-\lambda_{0}\right| \leq \epsilon / 2 K
$$

and

$$
\forall \epsilon, \exists n_{2}>n_{1}, \forall n>n_{2},\left\|x_{n}-x_{0}\right\| \leq \epsilon / 2\left(\left|\lambda_{0}\right|+1\right)
$$

so

$$
\begin{gathered}
\forall \epsilon, \exists n_{2}, \forall n>n_{2} \\
\left|\lambda_{n} x_{n}-\lambda_{0} x_{0}\right| \leq\left|\left(\lambda_{n}-\lambda_{0}\right)\right|\left\|x_{n}\right\|+\left|\lambda_{0}\right|\left\|\left(x_{n}-x_{0}\right)\right\| \leq \epsilon / 2+\epsilon / 2=\epsilon
\end{gathered}
$$

this completes the proof.
(3) Scalar product is not uniform. Assume this were the case, then for a given $\epsilon>0$, there would be $\delta>0$ such that any pair of points at distance at most δ would be mapped to a pair at a distance at most ϵ. Take x_{0} a non zero element, and let $\epsilon=2\left\|x_{0}\right\|$. Then take $\lambda_{1, n}=n, \lambda_{2, n}=n+1 / n, x_{1, n}=n x_{0}, x_{2, n}=n x_{0}$, then

$$
\left.\|\left(\lambda_{1, n}, x_{1, n}\right)-\left(\lambda_{2, n}, x_{2, n}\right)\right) \|=1 / n \rightarrow 0
$$

which becomes smaller than any $\delta>0$ but for any n

$$
\lambda_{1, n} x_{1, n}-\lambda_{2, n} x_{2, n}=-x_{0}
$$

and hence $\left\|\lambda_{1, n} x_{1, n}-\lambda_{2, n} x_{2, n}\right\|=\left\|x_{0}\right\|>\epsilon$. By contradiction, the scalar product is not uniformly continuous.

1.2 Completeness

Next we talk about completeness:
1.2.5 Definition. Let (X, τ) be topological space, $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$, we say $x_{n} \rightarrow x$ in X, if for each $U \in \mathcal{U}_{x}$ (neighourhood of $\left.x\right)$, $\exists n_{0} \in \mathbb{N}$ s.t. $\forall n \geqslant n_{0}, x_{n} \in U$.
1.2.6 Remark. For metric spaces, this implies the usual form of convergence:

$$
\forall \epsilon, \exists n_{0} \in \mathbb{N}, \forall n \geqslant n_{0}, d\left(x_{n}, x\right)<\epsilon
$$

For metric space, we will have a weaker notion of 'convergence' called Cauchy property.
1.2.7 Definition. Let (X, d) be metric space, a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is called Cauchy sequence if:

$$
\forall \epsilon, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0}, d\left(x_{n}, x_{m}\right) \leq \epsilon
$$

1.2.8 Remark. A convergence sequence is Cauchy by triangle inequality:
if

$$
\forall \epsilon, \exists n_{0}, \forall n>n_{0}, d\left(x_{n}, x\right)<\epsilon / 2 .
$$

then

$$
\forall \epsilon, \exists n_{0}, \forall m, n>n_{0}, d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x_{m}, x\right)<\epsilon / 2+\epsilon / 2=\epsilon
$$

but converse is not true for some space X like open interval equipped with usual metric.
1.2.9 Definition. (X, d) be metric space is called complete if each Cauchy sequence converges in X. A complete normed space is called Banach Space.
1.2.10 Remark. A subset of a complete metric space is completeness iff it is closed(sees next lemma for proof).
1.2.11 Lemma. Let (X, d) be complete metric space and $Y \subseteq X$, then (Y, d) is complete iff Y is closed in X

Proof. We prove it by two steps:
(1) if Y is a closed in X, cauchy sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset Y$.
so

$$
\left(x_{n}\right)_{n \in \mathbb{N}} \subset X
$$

Since X is complete,

$$
\exists x \in X, x_{n} \rightarrow x
$$

Since Y is closed, so the limit

$$
x \in Y
$$

so Y is complete.
(2) Assume Y is complete and take any $x \in \bar{Y}$. Then there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in Y such that

$$
x_{n} \rightarrow x \in X
$$

Since this sequence converges in X, then

$$
\forall \epsilon, \exists n_{0} \in \mathbb{N}, \forall n \geqslant n_{0}, d\left(x_{n}, x\right) \leq \epsilon / 2 .
$$

then

$$
\forall \epsilon, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0}, d\left(x_{n}, x_{m}\right) \leq d\left(x_{m}, x\right)+d\left(x_{n}, x\right) \leq \epsilon
$$

so this sequence is also cauchy in Y.
So it is Cauchy in Y and by the completeness of Y, it converges in Y to the limit $x \in Y$. Thus the limit $x \in Y$, so Y is closed.
1.2.12 Example. We give some concrete examples:
(a) $\mathbb{K}=\mathbb{C o r} \mathbb{R}$ are complete metric space.
(b) $\mathbb{Q} \subset \mathbb{R}$ is not complete.
(c) $\left(\mathbb{K}^{n},\|\cdot\|_{p}\right), 1 \leq p \leq \infty$ is Banach space.
(d) $l^{p}, 1 \leq p \leq \infty$ with norm $\|x\|_{p}=\left(\sum\left|x_{j}\right|^{p}\right)^{1 / p}$ is a Banach Space as well as $c_{0} \subset l^{\infty}$
(e) Bounded function space $\mathbb{B}(X, \mathbb{K})$ is a Banach Space equipped with $\|\cdot\|_{\infty}$.
(f) if X is a norm space, Y is Banach Space, then $\mathbb{B}(X, Y)$ is Banach Space with the operator norm.

Proof. Now we prove all of them:
(a) For number field \mathbb{K} like \mathbb{C}, \mathbb{R}, since $\mathbb{C} \cong \mathbb{R}^{2}$, so it deduced to the case of \mathbb{R}, but I do not how to prove \mathbb{R} is complete because \mathbb{R} is originally defined as the equivalence class of cauchy sequence in \mathbb{Q}, that is, \mathbb{R} is defined as the completeness of \mathbb{Q}.
(b) We prove that \mathbb{Q} is not closed in \mathbb{R}. Every irrational number can be expressed as binary form:

$$
x=\sum_{j=1}^{\infty} a_{i} / 2^{i}, a_{i}=0 / 1 .
$$

so consider the finite term:

$$
x_{n}=\sum_{j=1}^{n} a_{i} / 2^{i}, a_{i}=0 / 1
$$

we note that $x_{n} \rightarrow x$ and $x_{n} \in \mathbb{Q}$, which complete the proof.
(c) This is special case of (d), so we turn to (d) first. (How is (c) embedded in (d)?) You need to use that it is a closed subset to relegate it to (d).
(d) For $p<\infty$, first we prove it is a norm space.
(1) if $\|x\|_{p}=\left.\left(\sum_{j=1}^{\infty} \mid x_{n, j}\right)^{p}\right|^{1 / p}=0$, then $\forall n, x_{n}=0$, so $x=0$.
(2) $\|\lambda x\|_{p}=\left.\left(\sum_{j=1}^{\infty} \mid \lambda x_{n, j}\right)^{p}\right|^{1 / p}=|\lambda|\|x\|_{p}$.
(3) by Minkowskii inequality,

$$
\|x+y\|_{p}=\left(\sum_{j=1}^{\infty}\left|x_{n, j}+y_{n, j}\right|^{p}\right)^{1 / p} \leq\left(\sum_{j=1}^{\infty}\left|x_{n, j}\right|^{p}\right)^{1 / p}+\left(\sum_{j=1}^{\infty}\left|y_{n, j}\right|^{p}\right)^{1 / p}=\|x\|_{p}+\|y\|_{p}
$$

this complete the proof of norm properties.
We turn to completeness:
let $\left(x_{n}\right)_{n \in \mathbb{N}} \in l^{p}$ is a cauchy sequence, that is:

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0},\left(\sum_{j=1}^{\infty}\left|x_{n, j}-x_{m, j}\right|^{p}\right)^{1 / p}<\epsilon / 2
$$

so for each j, we have

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0},\left(\left|x_{n, j}-x_{m, j}\right|^{p}\right)^{1 / p}<\epsilon / 2
$$

that is, so for each $j,\left(x_{n, j}\right)_{n \in \mathbb{N}}$ is cauchy sequence. so

$$
\exists y_{j}, x_{n, j} \rightarrow y_{j}
$$

For fixed $n \geq n_{0}$, we apply Fatou lemma to

$$
\left(\sum_{j=1}^{\infty}\left|x_{n, j}-x_{m, j}\right|^{p}\right)^{1 / p}<\epsilon .
$$

when $m \rightarrow \infty$,

$$
\left(\sum_{j=1}^{\infty}\left|x_{n, j}-y_{j}\right|^{p}\right)^{1 / p}=\left.\left(\sum_{j=1}^{\infty} \underline{\lim _{m \rightarrow \infty}} \mid x_{n, j}-x_{m, j}\right)^{p}\right|^{1 / p} \leqslant \underline{\lim _{m \rightarrow \infty}}\left(\sum_{j=1}^{\infty}\left|x_{n, j}-x_{m, j}\right|^{p}\right)^{1 / p} \leq \epsilon / 2 .
$$

that is

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \geqslant n_{0},\left(\sum_{j}\left|x_{n, j}-y_{j}\right|^{p}\right)^{1 / p} \leq \epsilon / 2<\epsilon
$$

Moreover, by Minkowski's inequality:

$$
\left(\sum_{j}\left|y_{j}\right|^{p}\right)^{1 / p} \leq\left(\sum_{j}\left|x_{n_{0}, j}-y_{j}\right|^{p}\right)^{1 / p}+\left(\sum_{j}\left|x_{n_{0}, j}\right|^{p}\right)^{1 / p}<\epsilon+\left(\sum_{j}\left|x_{n_{0}, j}\right|^{p}\right)^{1 / p}<\infty
$$

so $y \in \ell^{p}$.
Thus, we have shown in l^{p},

$$
x_{n} \rightarrow y .
$$

This complete the proof of completeness for case $p<\infty$.
A similar proof can be applied to the case when $p=\infty$:
For $p=\infty$, first we prove it is a norm space.
(1) if $\|x\|_{\infty}=\sup _{n}\left|x_{n}\right|=0$, then $\forall n, x_{n}=0$, so $x=0$.
(2) $\|\lambda x\|_{\infty}=\sup _{n}\left|\lambda x_{n}\right|=|\lambda|\|x\|_{\infty}$.
(3) triangle inequality:

$$
\|x+y\|_{\infty}=\sup _{n}\left|x_{n}+y_{n}\right| \leq \sup _{n}\left|x_{n}\right|+\sup _{n}\left|y_{n}\right|=\|x\|_{\infty}+\|y\|_{\infty}
$$

this complete the proof of norm properties.
We turn to completeness:
let $\left(x_{n}\right)_{n \in \mathbb{N}} \in l^{\infty}$ is a cauchy sequence, that is:

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0}, \sup _{j}\left|x_{n, j}-x_{m, j}\right|<\epsilon / 2
$$

so for each j, we have

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0},\left|x_{n, j}-x_{m, j}\right|<\epsilon / 2
$$

that is, so for each $j,\left(x_{n, j}\right)_{n \in \mathbb{N}}$ is cauchy sequence. so

$$
\exists y_{j}, x_{n, j} \rightarrow y_{j}
$$

For fixed $n \geq n_{0}$, we let $m \rightarrow \infty$,

$$
\forall \epsilon, \exists n_{0}, \forall n>n_{0}, \forall j,\left|x_{n, j}-y_{j}\right|=\lim _{m \rightarrow \infty}\left|x_{n, j}-x_{m, j}\right| \leq \epsilon / 2<\epsilon
$$

that is

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \geqslant n_{0}, \sup _{j}\left|x_{n, j}-y_{j}\right| \leq \epsilon / 2<\epsilon
$$

Moreover, by triangular inequality:

$$
\sup _{j}\left|y_{j}\right| \leq \sup _{j}\left|x_{n_{0}, j}-y_{j}\right|+\sup _{j}\left|x_{n_{0}, j}\right|<\epsilon+\sup _{j}\left|x_{n_{0}, j}\right|<\infty .
$$

so $y \in \ell^{\infty}$.
Thus, we have shown in l^{∞},

$$
x_{n} \rightarrow y .
$$

This complete the proof of completeness for case $p=\infty$.
so l^{∞} is also complete.
c_{0} is closed with respect to the norm in l^{∞} :
Assume a sequence in c_{0} and a limit in l^{∞}

$$
x_{n} \rightarrow x .
$$

that is

$$
\forall \epsilon, \exists n_{0}, \forall n>n_{0}, \forall j,\left|x_{n, j}-x_{j}\right|<\epsilon / 2
$$

Fix $n \geq n_{0}$ then letting $j \rightarrow \infty$, we have by $\lim _{j \rightarrow \infty} x_{n, j}=0$ that

$$
\varlimsup_{j \rightarrow \infty}\left|x_{j}\right|=\varlimsup_{j \rightarrow \infty}\left|x_{n, j}-x_{j}\right| \leq \epsilon / 2<\epsilon
$$

so $x \in c_{0}$, that is c_{0} is a closed space in l^{∞}. Consequently, c_{0} is also Banach Space.
Returning to (c), consider $\mathbb{K}^{n} \subset l^{p}$ i.e. $\mathbb{K}^{n}=\left\{x \in l^{p}: x_{j}=0, j \geq n+1\right\}$.
assume in l^{p}, we have $x_{n} \in \mathbb{K}^{n} \rightarrow x$, that is:

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0},\left(\sum_{j}\left|x_{n, j}-x_{j}\right|^{p}\right)^{1 / p}<\epsilon / 2 .
$$

then we have:

$$
\forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n, m \geqslant n_{0},\left(\sum_{j \geq n+1}\left|x_{j}\right|^{p}\right)^{1 / p}=\left(\sum_{j \geq n+1}\left|x_{n, j}-x_{j}\right|^{p}\right)^{1 / p}<\epsilon / 2 .
$$

that means:

$$
x_{j}=0, j \geq n+1 .
$$

so $x \in \mathbb{K}^{n}$ i.e. \mathbb{K}^{n} is closed subspace in l^{p}, so \mathbb{K}^{n} is complete.

