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The following items are the continuation of a list of examples of the previous set of notes:

(e’) If X is a metric space, then (Cb(X,K), ‖ · ‖∞) is a Banach space, where Cb(X,K) is
the set of continuous, bounded, K-valued functions on X and ‖ · ‖∞ is defined by f 7→
supx∈X |f(x)|.

To see that ‖ · ‖∞ is a norm, observe that

‖f‖∞ = sup
x∈X
|f(x)| = 0⇐⇒ f(x) = 0 for all x ∈ X.

Moreover, if λ ∈ R, then ‖λf‖∞ = supx∈X |λf(x)| = |λ| supx∈X |f(x)| = |λ|‖f‖∞.

Finally, if f, g ∈ Cb(X,R), then

‖f + g‖∞ = sup
x∈X
|f(x) + g(x)| ≤ sup

x∈X
|f(x)|+ sup

x∈X
|g(x)| = ‖f‖∞ + ‖g‖∞.

To see that (Cb(X,R), ‖ · ‖∞) is complete, let (fn)n∈N be Cauchy in Cb(X,R) and let
ε > 0. Then there is an n0 ∈ N such that ‖fn − fm‖∞ < ε whenever m,n ≥ n0, which
implies that for all x ∈ X, |fm(x)− fn(x)| ≤ ‖fm− fn‖∞ < ε whenever m,n ≥ n0, which
in turn implies that (fn(x))n∈N is Cauchy in R and thus converges to an element of R.
Define f : X → R by x 7→ limn→∞ fn(x).

To see that (fn)n∈N converges to f and that f is continuous, let ε > 0. Then there is
an n0 ∈ N such that ‖fm − fn‖∞ < ε/2 whenever m,n ≥ n0, which implies that for all
x ∈ X, |fm(x) − fn(x)| < ε/2 whenever m,n ≥ n0, which in turn implies that for all
x ∈ X,

lim
m→∞

|fm(x)− fn(x)| = |f(x)− fn(x)| ≤
ε

2
< ε

whenever n ≥ n0. Therefore, (fn)n∈N converges uniformly to f , which implies that f is
continuous.

To see that f is bounded, let ε > 0, let n0 ∈ N be such that ‖f − fn0‖ < ε, and note
that fn0 is bounded, which implies that there is an M ≥ 0 such that ‖fn0‖∞ ≤ M . Then
‖f‖∞ ≤ ‖f − fn0‖∞ + ‖fn0‖∞ < ε+M . Therefore, f is bounded.
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(f) If (X, ‖ · ‖X) is a normed space and (Y, ‖ · ‖Y ) is a Banach space, then (B(X, Y ), ‖ · ‖op)
is a Banach space, where ‖ · ‖op is the operator norm defined by

S 7→ sup
x 6=0

‖Sx‖Y
‖x‖X

.

To see that B(X, Y ) is a normed space, let S, T ∈ B(X, Y ). Then

‖S + T‖op = sup
x 6=0

‖(S + T )x‖Y
‖x‖X

≤ sup
x 6=0

‖Sx‖Y
‖x‖X

+ sup
x 6=0

‖Tx‖Y
‖x‖X

= ‖S‖op + ‖T‖op.

Let λ ∈ K. Then

‖λS‖op = sup
x 6=0

‖λSx‖Y
‖x‖X

= |λ| sup
x 6=0

‖Sx‖Y
‖x‖X

= |λ|‖S‖op.

Observe that

0 = ‖T‖op = sup
x 6=0

‖Tx‖Y
‖x‖X

⇐⇒ ‖Tx‖Y = 0 for all 0 6= x ∈ X ⇐⇒ T = 0.

To see that B(X, Y ) is complete, let (Tn)n∈N be a Cauchy sequence in B(X, Y ), let ε > 0,
and let x ∈ X. Then there is an n0 ∈ N such that ‖Tm − Tn‖op < ε/‖x‖X whenever
m,n ≥ n0, which implies that ‖Tmx − Tnx‖Y ≤ ‖Tm − Tn‖op‖x‖X < ε, which in turn
implies that (Tnx)n∈N is a Cauchy sequence in Y and thus converges to an element in Y
since Y is complete. Therefore, define T : X → Y by x 7→ limn→∞ Tnx.

To see that T is linear, let x, y ∈ X and let λ ∈ K. Then

T (λx+ y) = lim
n→∞

Tn(λx+ y) = λ lim
n→∞

Tnx+ lim
n→∞

Tny = λTx+ Ty.

To see that T is bounded, let ε = 1 and let x ∈ X such that ‖x‖X ≤ 1. Then there is an
n0 ∈ N such that for all n ≥ n0,

‖Tx‖Y ≤ ‖Tnx‖Y + ‖Tx− Tnx‖Y < ‖Tn‖op + 1.

To see that limn→∞ Tn = T , let ε > 0 and let x ∈ X such that ‖x‖X ≤ 1. Then
there is an n0 ∈ N such that ‖Tx − Tnx‖Y < ε/2 whenever n ≥ n0. Since (Tn)n∈N is a
Cauchy sequence in B(X, Y ), there is an N0 ∈ N such that ‖Tm − Tn‖op < ε/2 whenever
m,n ≥ N0. Therefore,

‖Tx− Tnx‖Y ≤ ‖Tx− Tmx‖Y + ‖Tmx− Tnx‖Y < ε

whenever m,n ≥ max{n0, N0}.
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1.3 Completion

1.3.1 Definition. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y .

(1) If dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X, then f is called an isometry.

(2) If f(X) = Y and f is an isometry, then f is called an isometric isomorphism, and we
write X ∼= Y .

(3) If f is an isometry, f(X) = Y , and Y is complete, then f is called a completion.

1.3.2 Theorem. Let (X, dX) and (Y, dY ) be metric spaces.

(1) X has a completion.

(2) If f : X → Y is uniformly continuous, then there is a unique uniformly continuous map
f̂ : X̂ → Ŷ such that f̂ |X = f , where η : X → (X̂, dX̂) and ϕ : Y → (Ŷ , dŶ ) are
completions.

(3) If X has completions X̂ and η : X → Y , then X̂ and Y are isometrically isomorphic.

Proof. (1) Fix x0 ∈ X and define η : X → Cb(X,R) by x 7→ fx, where fx : X → R is
defined by y 7→ dX(x, y) − dX(y, x0). Recall that Cb(X,R) is a metric space with the metric
induced by ‖ · ‖∞. Since fx(y) = dX(x, y) − dX(y, x0) ≤ dX(x, x0), fx is bounded. Since
dX is continuous, fx is continuous. Therefore, fx ∈ Cb(X,R). Let x1, x2, y ∈ X. Then
fx1(y) − fx2(y) = dX(x1, y) − dX(y, x2), which implies that |fx1(y) − fx2(y)| ≤ dX(x1, x2).
Observe that equality is attained if y = x2. Therefore, ‖fx1− fx2‖∞ = dX(x1, x2), which implies
that η is an isometry. Let X̂ = η(X). Since (Cb(X,R), ‖ · ‖∞) is a Banach space and X̂ is
closed, X̂ is complete, which implies that X̂ is a completion of X.

(2) Identify X with η(X), identify Y with ϕ(Y ), let x̂ ∈ X̂, and let ε > 0. Since X is dense in
X̂, there is a sequence (xn)n∈N in X that converges to x̂. Since f is uniformly continuous, there
is a δ > 0 such that for all x, x′ ∈ X with dX̂(x, x

′) < δ, dŶ (f(x), f(x
′)) < ε. Since (xn)n∈N is

Cauchy, there is an n0 ∈ N such that dX̂(xm, xn) < δ whenever m,n ≥ n0, which implies that
dŶ (f(xm), f(xn)) < ε whenever m,n ≥ n0, which in turn implies that (f(xn))n∈N is Cauchy

and thus converges to an element of Ŷ . Extend f to f̂ by defining f̂(x̂) = limn→∞ f(xn).

To see that f̂ is well defined, let (x′n)n∈N be a sequence in X that converges to x̂. Then, by the
previous argument, (f̂(x′n))n∈N is Cauchy, which implies that (f̂(x1), f̂(x

′
1), f̂(x2), f̂(x

′
2), . . . )

is Cauchy and converges to x̂ since its subsequence (f̂(xn))n∈N converges to x̂, which in turn
implies that (f̂(x′n))n∈N converges to x̂.

To see that f̂ |X = f , let x ∈ X and let (xn)n∈N be such that xn = x for all n ∈ N. Then
f̂(x) = limn→∞ f(xn) = f(x).

To see that f̂ is uniformly continuous, let ε > 0. Since f̂ |X is uniformly continuous, there is
a δ > 0 such that for all x, y ∈ X with dX̂(x, y) < δ, dŶ (f̂(x), f̂(y)) < ε/3. Let x̂, ŷ ∈ X̂
with dX̂(x̂, ŷ) < δ/3. Then there are sequences (xn)n∈N and (yn)n∈N in X converging to x̂
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and ŷ, respectively, which implies that there is an n0 ∈ N such that dX̂(xn, x̂) < δ/3 and
dX̂(yn, ŷ) < δ/3 whenever n ≥ n0. Since dX̂(xn, yn) ≤ dX̂(xn, x̂) + dX̂(x̂, ŷ) + dX̂(ŷ, yn) < δ

whenever n ≥ n0, dŶ (f̂(xn), f̂(yn)) < ε/3 whenever n ≥ n0. Since (f̂(xn))n∈N and (f̂(yn))n∈N
converge to f̂(x̂) and f̂(ŷ), respectively, there is an N0 ∈ N such that dŶ (f̂(xn), f̂(x̂)) <

ε/3 and dŶ (f̂(yn), f̂(ŷ)) < ε/3 whenever n ≥ N0. Letting N = max{n0, N0} yields that

dŶ (f̂(x̂), f̂(ŷ)) ≤ dŶ (f̂(x̂), f̂(xn)) + dŶ (f̂(xn), f̂(yn)) + dŶ (f̂(yn), f̂(ŷ)) < ε.

To see that f̂ is unique, let h : X̂ → Ŷ be a uniformly continuous extension of f and let (xn)n∈N be
a sequence in X converging to x̂ ∈ X̂. Since h is continuous, limn→∞ h(xn) = h(limn→∞ xn) =
h(x̂). Since h(xn) = f(xn) for all n ∈ N, h(x̂) = limn→∞ h(xn) = limn→∞ f(xn) = f̂(x̂).

(3) Identify X with η(X). To see that η is uniformly continuous, let ε = δ > 0 and observe that
if x, y ∈ X are such that dX(x, y) < δ, then dY (η(x), η(y)) = dX(x, y) < δ = ε since η is an
isometry. Moreover, observe that the completion of a complete metric space is its identity map.
Therefore, η extends to η̂ : X̂ → Y .

To see that η̂ is an isometry, let x̂, ŷ ∈ X̂. Then there are sequences (xn)n∈N and (yn)n∈N in X
that converge to x̂ and ŷ, respectively. Therefore,

dX̂(xn, yn) = dX(xn, yn) = dY (η(xn), η(yn)) = dŶ (η(xn), η(yn)),

and taking the limit as n approaches infinity yields that dX̂(x̂, ŷ) = dŶ (η(x̂), η(ŷ)).

As above, η−1 : η(X)→ X extends to an isometry η̂−1 : Y → X̂. Therefore, η̂−1 ◦ η̂ : X̂ → X̂

is an extension of the identity map on X, which implies that η̂−1 ◦ η̂ : X̂ → X̂ is the identity

map on X̂. Similarly, η̂ ◦ η̂−1 : Y → Y is the identity map on Y . Therefore, η̂ is an isometric
isomorphism.

To visualize the functions fx constructed in the proof of (1) above, let X = Q and let x0 = 0.
Then the graphs of f−3 and f2 are as follows:
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Plots of f-3 and f2 with x0=0.
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Moreover, the graph of |f−3 − f2| is as follows:
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Plot of |f-3-f2| with x0=0.

Therefore, supx∈Q |f−3(x)− f2(x)| = 5, which shows us that | − 3− 2| = ‖f−3 − f2‖∞.
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