Functional Analysis, Math 7320 Lecture Notes from September 1, 2016

taken by Wilfredo J. Molina

The following items are the continuation of a list of examples of the previous set of notes:

(e') If X is a metric space, then $(C_b(X, \mathbb{K}), \|\cdot\|_{\infty})$ is a Banach space, where $C_b(X, \mathbb{K})$ is the set of continuous, bounded, \mathbb{K} -valued functions on X and $\|\cdot\|_{\infty}$ is defined by $f \mapsto \sup_{x \in X} |f(x)|$.

To see that $\|\cdot\|_{\infty}$ is a norm, observe that

$$||f||_{\infty} = \sup_{x \in X} |f(x)| = 0 \iff f(x) = 0 \text{ for all } x \in X.$$

Moreover, if $\lambda \in \mathbb{R}$, then $\|\lambda f\|_{\infty} = \sup_{x \in X} |\lambda f(x)| = |\lambda| \sup_{x \in X} |f(x)| = |\lambda| \|f\|_{\infty}$.

Finally, if $f, g \in C_b(X, \mathbb{R})$, then

$$||f + g||_{\infty} = \sup_{x \in X} |f(x) + g(x)| \le \sup_{x \in X} |f(x)| + \sup_{x \in X} |g(x)| = ||f||_{\infty} + ||g||_{\infty}$$

To see that $(C_b(X, \mathbb{R}), \|\cdot\|_{\infty})$ is complete, let $(f_n)_{n\in\mathbb{N}}$ be Cauchy in $C_b(X, \mathbb{R})$ and let $\varepsilon > 0$. Then there is an $n_0 \in \mathbb{N}$ such that $\|f_n - f_m\|_{\infty} < \varepsilon$ whenever $m, n \ge n_0$, which implies that for all $x \in X$, $|f_m(x) - f_n(x)| \le \|f_m - f_n\|_{\infty} < \varepsilon$ whenever $m, n \ge n_0$, which in turn implies that $(f_n(x))_{n\in\mathbb{N}}$ is Cauchy in \mathbb{R} and thus converges to an element of \mathbb{R} . Define $f: X \to \mathbb{R}$ by $x \mapsto \lim_{n\to\infty} f_n(x)$.

To see that $(f_n)_{n\in\mathbb{N}}$ converges to f and that f is continuous, let $\varepsilon > 0$. Then there is an $n_0 \in \mathbb{N}$ such that $||f_m - f_n||_{\infty} < \varepsilon/2$ whenever $m, n \ge n_0$, which implies that for all $x \in X$, $|f_m(x) - f_n(x)| < \varepsilon/2$ whenever $m, n \ge n_0$, which in turn implies that for all $x \in X$,

$$\lim_{m \to \infty} |f_m(x) - f_n(x)| = |f(x) - f_n(x)| \le \frac{\varepsilon}{2} < \varepsilon$$

whenever $n \ge n_0$. Therefore, $(f_n)_{n \in \mathbb{N}}$ converges uniformly to f, which implies that f is continuous.

To see that f is bounded, let $\varepsilon > 0$, let $n_0 \in \mathbb{N}$ be such that $||f - f_{n_0}|| < \varepsilon$, and note that f_{n_0} is bounded, which implies that there is an $M \ge 0$ such that $||f_{n_0}||_{\infty} \le M$. Then $||f||_{\infty} \le ||f - f_{n_0}||_{\infty} + ||f_{n_0}||_{\infty} < \varepsilon + M$. Therefore, f is bounded.

(f) If $(X, \|\cdot\|_X)$ is a normed space and $(Y, \|\cdot\|_Y)$ is a Banach space, then $(\mathcal{B}(X, Y), \|\cdot\|_{op})$ is a Banach space, where $\|\cdot\|_{op}$ is the operator norm defined by

$$S \mapsto \sup_{x \neq 0} \frac{\|Sx\|_Y}{\|x\|_X}.$$

To see that $\mathcal{B}(X,Y)$ is a normed space, let $S,T \in \mathcal{B}(X,Y)$. Then

$$\|S+T\|_{\mathsf{op}} = \sup_{x \neq 0} \frac{\|(S+T)x\|_Y}{\|x\|_X} \le \sup_{x \neq 0} \frac{\|Sx\|_Y}{\|x\|_X} + \sup_{x \neq 0} \frac{\|Tx\|_Y}{\|x\|_X} = \|S\|_{\mathsf{op}} + \|T\|_{\mathsf{op}}.$$

Let $\lambda \in \mathbb{K}$. Then

$$\|\lambda S\|_{\rm op} = \sup_{x \neq 0} \frac{\|\lambda Sx\|_Y}{\|x\|_X} = |\lambda| \sup_{x \neq 0} \frac{\|Sx\|_Y}{\|x\|_X} = |\lambda| \|S\|_{\rm op}.$$

Observe that

$$0 = \|T\|_{\mathsf{op}} = \sup_{x \neq 0} \frac{\|Tx\|_Y}{\|x\|_X} \Longleftrightarrow \|Tx\|_Y = 0 \text{ for all } 0 \neq x \in X \Longleftrightarrow T = 0.$$

To see that $\mathcal{B}(X, Y)$ is complete, let $(T_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\mathcal{B}(X, Y)$, let $\varepsilon > 0$, and let $x \in X$. Then there is an $n_0 \in \mathbb{N}$ such that $||T_m - T_n||_{op} < \varepsilon/||x||_X$ whenever $m, n \ge n_0$, which implies that $||T_m x - T_n x||_Y \le ||T_m - T_n||_{op}||x||_X < \varepsilon$, which in turn implies that $(T_n x)_{n \in \mathbb{N}}$ is a Cauchy sequence in Y and thus converges to an element in Y since Y is complete. Therefore, define $T: X \to Y$ by $x \mapsto \lim_{n \to \infty} T_n x$.

To see that T is linear, let $x, y \in X$ and let $\lambda \in \mathbb{K}$. Then

$$T(\lambda x + y) = \lim_{n \to \infty} T_n(\lambda x + y) = \lambda \lim_{n \to \infty} T_n x + \lim_{n \to \infty} T_n y = \lambda T x + T y.$$

To see that T is bounded, let $\varepsilon = 1$ and let $x \in X$ such that $||x||_X \leq 1$. Then there is an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$||Tx||_{Y} \le ||T_{n}x||_{Y} + ||Tx - T_{n}x||_{Y} < ||T_{n}||_{op} + 1.$$

To see that $\lim_{n\to\infty} T_n = T$, let $\varepsilon > 0$ and let $x \in X$ such that $||x||_X \leq 1$. Then there is an $n_0 \in \mathbb{N}$ such that $||Tx - T_n x||_Y < \varepsilon/2$ whenever $n \ge n_0$. Since $(T_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in $\mathcal{B}(X, Y)$, there is an $N_0 \in \mathbb{N}$ such that $||T_m - T_n||_{op} < \varepsilon/2$ whenever $m, n \ge N_0$. Therefore,

$$||Tx - T_n x||_Y \le ||Tx - T_m x||_Y + ||T_m x - T_n x||_Y < \varepsilon$$

whenever $m, n \geq \max\{n_0, N_0\}$.

1.3 Completion

- **1.3.1 Definition.** Let (X, d_X) and (Y, d_Y) be metric spaces and $f : X \to Y$.
- (1) If $d_Y(f(x), f(y)) = d_X(x, y)$ for all $x, y \in X$, then f is called an **isometry**.
- (2) If f(X) = Y and f is an isometry, then f is called an **isometric isomorphism**, and we write $X \cong Y$.
- (3) If f is an isometry, f(X) = Y, and Y is complete, then f is called a **completion**.

1.3.2 Theorem. Let (X, d_X) and (Y, d_Y) be metric spaces.

- (1) X has a completion.
- (2) If $f : X \to Y$ is uniformly continuous, then there is a unique uniformly continuous map $\hat{f} : \hat{X} \to \hat{Y}$ such that $\hat{f}|_X = f$, where $\eta : X \to (\hat{X}, d_{\hat{X}})$ and $\varphi : Y \to (\hat{Y}, d_{\hat{Y}})$ are completions.
- (3) If X has completions \hat{X} and $\eta: X \to Y$, then \hat{X} and Y are isometrically isomorphic.

Proof. (1) Fix $x_0 \in X$ and define $\eta : X \to C_b(X, \mathbb{R})$ by $x \mapsto f_x$, where $f_x : X \to \mathbb{R}$ is defined by $y \mapsto d_X(x, y) - d_X(y, x_0)$. Recall that $C_b(X, \mathbb{R})$ is a metric space with the metric induced by $\|\cdot\|_{\infty}$. Since $f_x(y) = d_X(x, y) - d_X(y, x_0) \leq d_X(x, x_0)$, f_x is bounded. Since d_X is continuous, f_x is continuous. Therefore, $f_x \in C_b(X, \mathbb{R})$. Let $x_1, x_2, y \in X$. Then $f_{x_1}(y) - f_{x_2}(y) = d_X(x_1, y) - d_X(y, x_2)$, which implies that $|f_{x_1}(y) - f_{x_2}(y)| \leq d_X(x_1, x_2)$. Observe that equality is attained if $y = x_2$. Therefore, $||f_{x_1} - f_{x_2}||_{\infty} = d_X(x_1, x_2)$, which implies that η is an isometry. Let $\hat{X} = \overline{\eta(X)}$. Since $(C_b(X, \mathbb{R}), \|\cdot\|_{\infty})$ is a Banach space and \hat{X} is closed, \hat{X} is complete, which implies that \hat{X} is a completion of X.

(2) Identify X with $\eta(X)$, identify Y with $\varphi(Y)$, let $\hat{x} \in \hat{X}$, and let $\varepsilon > 0$. Since X is dense in \hat{X} , there is a sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to \hat{x} . Since f is uniformly continuous, there is a $\delta > 0$ such that for all $x, x' \in X$ with $d_{\hat{X}}(x, x') < \delta$, $d_{\hat{Y}}(f(x), f(x')) < \varepsilon$. Since $(x_n)_{n \in \mathbb{N}}$ is Cauchy, there is an $n_0 \in \mathbb{N}$ such that $d_{\hat{X}}(x_m, x_n) < \delta$ whenever $m, n \ge n_0$, which implies that $d_{\hat{Y}}(f(x_m), f(x_n)) < \varepsilon$ whenever $m, n \ge n_0$, which in turn implies that $(f(x_n))_{n \in \mathbb{N}}$ is Cauchy and thus converges to an element of \hat{Y} . Extend f to \hat{f} by defining $\hat{f}(\hat{x}) = \lim_{n \to \infty} f(x_n)$.

To see that \hat{f} is well defined, let $(x'_n)_{n\in\mathbb{N}}$ be a sequence in X that converges to \hat{x} . Then, by the previous argument, $(\hat{f}(x'_n))_{n\in\mathbb{N}}$ is Cauchy, which implies that $(\hat{f}(x_1), \hat{f}(x'_1), \hat{f}(x_2), \hat{f}(x'_2), \dots)$ is Cauchy and converges to \hat{x} since its subsequence $(\hat{f}(x_n))_{n\in\mathbb{N}}$ converges to \hat{x} , which in turn implies that $(\hat{f}(x'_n))_{n\in\mathbb{N}}$ converges to \hat{x} .

To see that $\hat{f}|_X = f$, let $x \in X$ and let $(x_n)_{n \in \mathbb{N}}$ be such that $x_n = x$ for all $n \in \mathbb{N}$. Then $\hat{f}(x) = \lim_{n \to \infty} f(x_n) = f(x)$.

To see that \hat{f} is uniformly continuous, let $\varepsilon > 0$. Since $\hat{f}|_X$ is uniformly continuous, there is a $\delta > 0$ such that for all $x, y \in X$ with $d_{\hat{X}}(x, y) < \delta$, $d_{\hat{Y}}(\hat{f}(x), \hat{f}(y)) < \varepsilon/3$. Let $\hat{x}, \hat{y} \in \hat{X}$ with $d_{\hat{X}}(\hat{x}, \hat{y}) < \delta/3$. Then there are sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in X converging to \hat{x} and \hat{y} , respectively, which implies that there is an $n_0 \in \mathbb{N}$ such that $d_{\hat{X}}(x_n, \hat{x}) < \delta/3$ and $d_{\hat{X}}(y_n, \hat{y}) < \delta/3$ whenever $n \ge n_0$. Since $d_{\hat{X}}(x_n, y_n) \le d_{\hat{X}}(x_n, \hat{x}) + d_{\hat{X}}(\hat{x}, \hat{y}) + d_{\hat{X}}(\hat{y}, y_n) < \delta$ whenever $n \ge n_0$, $d_{\hat{Y}}(\hat{f}(x_n), \hat{f}(y_n)) < \varepsilon/3$ whenever $n \ge n_0$. Since $(\hat{f}(x_n))_{n \in \mathbb{N}}$ and $(\hat{f}(y_n))_{n \in \mathbb{N}}$ converge to $\hat{f}(\hat{x})$ and $\hat{f}(\hat{y})$, respectively, there is an $N_0 \in \mathbb{N}$ such that $d_{\hat{Y}}(\hat{f}(x_n), \hat{f}(\hat{x})) < \varepsilon/3$ and $d_{\hat{Y}}(\hat{f}(y_n), \hat{f}(\hat{y})) < \varepsilon/3$ whenever $n \ge N_0$. Letting $N = \max\{n_0, N_0\}$ yields that $d_{\hat{Y}}(\hat{f}(\hat{x}), \hat{f}(\hat{x})) + d_{\hat{Y}}(\hat{f}(x_n), \hat{f}(y_n)) + d_{\hat{Y}}(\hat{f}(y_n), \hat{f}(\hat{y})) < \varepsilon$.

To see that \hat{f} is unique, let $h: \hat{X} \to \hat{Y}$ be a uniformly continuous extension of f and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X converging to $\hat{x} \in \hat{X}$. Since h is continuous, $\lim_{n\to\infty} h(x_n) = h(\lim_{n\to\infty} x_n) = h(\hat{x})$. Since $h(x_n) = f(x_n)$ for all $n \in \mathbb{N}$, $h(\hat{x}) = \lim_{n\to\infty} h(x_n) = \lim_{n\to\infty} f(x_n) = \hat{f}(\hat{x})$.

(3) Identify X with $\eta(X)$. To see that η is uniformly continuous, let $\varepsilon = \delta > 0$ and observe that if $x, y \in X$ are such that $d_X(x, y) < \delta$, then $d_Y(\eta(x), \eta(y)) = d_X(x, y) < \delta = \varepsilon$ since η is an isometry. Moreover, observe that the completion of a complete metric space is its identity map. Therefore, η extends to $\hat{\eta} : \hat{X} \to Y$.

To see that $\hat{\eta}$ is an isometry, let $\hat{x}, \hat{y} \in \hat{X}$. Then there are sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in X that converge to \hat{x} and \hat{y} , respectively. Therefore,

$$d_{\hat{X}}(x_n, y_n) = d_X(x_n, y_n) = d_Y(\eta(x_n), \eta(y_n)) = d_{\hat{Y}}(\eta(x_n), \eta(y_n)),$$

and taking the limit as n approaches infinity yields that $d_{\hat{x}}(\hat{x}, \hat{y}) = d_{\hat{y}}(\eta(\hat{x}), \eta(\hat{y})).$

As above, $\eta^{-1}: \eta(X) \to X$ extends to an isometry $\widehat{\eta^{-1}}: Y \to \hat{X}$. Therefore, $\widehat{\eta^{-1}} \circ \widehat{\eta}: \hat{X} \to \hat{X}$ is an extension of the identity map on X, which implies that $\widehat{\eta^{-1}} \circ \widehat{\eta}: \hat{X} \to \hat{X}$ is the identity map on \hat{X} . Similarly, $\widehat{\eta} \circ \widehat{\eta^{-1}}: Y \to Y$ is the identity map on Y. Therefore, $\widehat{\eta}$ is an isometric isomorphism.

To visualize the functions f_x constructed in the proof of (1) above, let $X = \mathbb{Q}$ and let $x_0 = 0$. Then the graphs of f_{-3} and f_2 are as follows:

Moreover, the graph of $\left|f_{-3}-f_{2}\right|$ is as follows:

Therefore, $\sup_{x \in \mathbb{Q}} |f_{-3}(x) - f_2(x)| = 5$, which shows us that $|-3 - 2| = ||f_{-3} - f_2||_{\infty}$.