Functional Analysis, Math 7320 Lecture Notes from September 1, 2016

taken by Wilfredo J. Molina

The following items are the continuation of a list of examples of the previous set of notes:
(e') If X is a metric space, then $\left(C_{b}(X, \mathbb{K}),\|\cdot\|_{\infty}\right)$ is a Banach space, where $C_{b}(X, \mathbb{K})$ is the set of continuous, bounded, \mathbb{K}-valued functions on X and $\|\cdot\|_{\infty}$ is defined by $f \mapsto$ $\sup _{x \in X}|f(x)|$.

To see that $\|\cdot\|_{\infty}$ is a norm, observe that

$$
\|f\|_{\infty}=\sup _{x \in X}|f(x)|=0 \Longleftrightarrow f(x)=0 \text { for all } x \in X
$$

Moreover, if $\lambda \in \mathbb{R}$, then $\|\lambda f\|_{\infty}=\sup _{x \in X}|\lambda f(x)|=|\lambda| \sup _{x \in X}|f(x)|=|\lambda|\|f\|_{\infty}$.
Finally, if $f, g \in C_{b}(X, \mathbb{R})$, then

$$
\|f+g\|_{\infty}=\sup _{x \in X}|f(x)+g(x)| \leq \sup _{x \in X}|f(x)|+\sup _{x \in X}|g(x)|=\|f\|_{\infty}+\|g\|_{\infty} .
$$

To see that $\left(C_{b}(X, \mathbb{R}),\|\cdot\|_{\infty}\right)$ is complete, let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be Cauchy in $C_{b}(X, \mathbb{R})$ and let $\varepsilon>0$. Then there is an $n_{0} \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon$ whenever $m, n \geq n_{0}$, which implies that for all $x \in X,\left|f_{m}(x)-f_{n}(x)\right| \leq\left\|f_{m}-f_{n}\right\|_{\infty}<\varepsilon$ whenever $m, n \geq n_{0}$, which in turn implies that $\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is Cauchy in \mathbb{R} and thus converges to an element of \mathbb{R}. Define $f: X \rightarrow \mathbb{R}$ by $x \mapsto \lim _{n \rightarrow \infty} f_{n}(x)$.

To see that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f and that f is continuous, let $\varepsilon>0$. Then there is an $n_{0} \in \mathbb{N}$ such that $\left\|f_{m}-f_{n}\right\|_{\infty}<\varepsilon / 2$ whenever $m, n \geq n_{0}$, which implies that for all $x \in X,\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon / 2$ whenever $m, n \geq n_{0}$, which in turn implies that for all $x \in X$,

$$
\lim _{m \rightarrow \infty}\left|f_{m}(x)-f_{n}(x)\right|=\left|f(x)-f_{n}(x)\right| \leq \frac{\varepsilon}{2}<\varepsilon
$$

whenever $n \geq n_{0}$. Therefore, $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to f, which implies that f is continuous.

To see that f is bounded, let $\varepsilon>0$, let $n_{0} \in \mathbb{N}$ be such that $\left\|f-f_{n_{0}}\right\|<\varepsilon$, and note that $f_{n_{0}}$ is bounded, which implies that there is an $M \geq 0$ such that $\left\|f_{n_{0}}\right\|_{\infty} \leq M$. Then $\|f\|_{\infty} \leq\left\|f-f_{n_{0}}\right\|_{\infty}+\left\|f_{n_{0}}\right\|_{\infty}<\varepsilon+M$. Therefore, f is bounded.
(f) If $\left(X,\|\cdot\|_{X}\right)$ is a normed space and $\left(Y,\|\cdot\|_{Y}\right)$ is a Banach space, then $\left(\mathcal{B}(X, Y),\|\cdot\|_{\text {op }}\right)$ is a Banach space, where $\|\cdot\|_{\text {op }}$ is the operator norm defined by

$$
S \mapsto \sup _{x \neq 0} \frac{\|S x\|_{Y}}{\|x\|_{X}}
$$

To see that $\mathcal{B}(X, Y)$ is a normed space, let $S, T \in \mathcal{B}(X, Y)$. Then

$$
\|S+T\|_{\mathrm{op}}=\sup _{x \neq 0} \frac{\|(S+T) x\|_{Y}}{\|x\|_{X}} \leq \sup _{x \neq 0} \frac{\|S x\|_{Y}}{\|x\|_{X}}+\sup _{x \neq 0} \frac{\|T x\|_{Y}}{\|x\|_{X}}=\|S\|_{\mathrm{op}}+\|T\|_{\mathrm{op}}
$$

Let $\lambda \in \mathbb{K}$. Then

$$
\|\lambda S\|_{\mathrm{op}}=\sup _{x \neq 0} \frac{\|\lambda S x\|_{Y}}{\|x\|_{X}}=|\lambda| \sup _{x \neq 0} \frac{\|S x\|_{Y}}{\|x\|_{X}}=|\lambda|\|S\|_{\mathrm{op}} .
$$

Observe that

$$
0=\|T\|_{\mathrm{op}}=\sup _{x \neq 0} \frac{\|T x\|_{Y}}{\|x\|_{X}} \Longleftrightarrow\|T x\|_{Y}=0 \text { for all } 0 \neq x \in X \Longleftrightarrow T=0
$$

To see that $\mathcal{B}(X, Y)$ is complete, let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\mathcal{B}(X, Y)$, let $\varepsilon>0$, and let $x \in X$. Then there is an $n_{0} \in \mathbb{N}$ such that $\left\|T_{m}-T_{n}\right\|_{\text {op }}<\varepsilon /\|x\|_{X}$ whenever $m, n \geq n_{0}$, which implies that $\left\|T_{m} x-T_{n} x\right\|_{Y} \leq\left\|T_{m}-T_{n}\right\|_{\text {op }}\|x\|_{X}<\varepsilon$, which in turn implies that $\left(T_{n} x\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in Y and thus converges to an element in Y since Y is complete. Therefore, define $T: X \rightarrow Y$ by $x \mapsto \lim _{n \rightarrow \infty} T_{n} x$.

To see that T is linear, let $x, y \in X$ and let $\lambda \in \mathbb{K}$. Then

$$
T(\lambda x+y)=\lim _{n \rightarrow \infty} T_{n}(\lambda x+y)=\lambda \lim _{n \rightarrow \infty} T_{n} x+\lim _{n \rightarrow \infty} T_{n} y=\lambda T x+T y
$$

To see that T is bounded, let $\varepsilon=1$ and let $x \in X$ such that $\|x\|_{X} \leq 1$. Then there is an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,

$$
\|T x\|_{Y} \leq\left\|T_{n} x\right\|_{Y}+\left\|T x-T_{n} x\right\|_{Y}<\left\|T_{n}\right\|_{\mathrm{op}}+1 .
$$

To see that $\lim _{n \rightarrow \infty} T_{n}=T$, let $\varepsilon>0$ and let $x \in X$ such that $\|x\|_{X} \leq 1$. Then there is an $n_{0} \in \mathbb{N}$ such that $\left\|T x-T_{n} x\right\|_{Y}<\varepsilon / 2$ whenever $n \geq n_{0}$. Since $\left(T_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathcal{B}(X, Y)$, there is an $N_{0} \in \mathbb{N}$ such that $\left\|T_{m}-T_{n}\right\|_{\text {op }}<\varepsilon / 2$ whenever $m, n \geq N_{0}$. Therefore,

$$
\left\|T x-T_{n} x\right\|_{Y} \leq\left\|T x-T_{m} x\right\|_{Y}+\left\|T_{m} x-T_{n} x\right\|_{Y}<\varepsilon
$$

whenever $m, n \geq \max \left\{n_{0}, N_{0}\right\}$.

1.3 Completion

1.3.1 Definition. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and $f: X \rightarrow Y$.
(1) If $d_{Y}(f(x), f(y))=d_{X}(x, y)$ for all $x, y \in X$, then f is called an isometry.
(2) If $f(X)=Y$ and f is an isometry, then f is called an isometric isomorphism, and we write $X \cong Y$.
(3) If f is an isometry, $\overline{f(X)}=Y$, and Y is complete, then f is called a completion.
1.3.2 Theorem. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces.
(1) X has a completion.
(2) If $f: X \rightarrow Y$ is uniformly continuous, then there is a unique uniformly continuous map $\hat{f}: \hat{X} \rightarrow \hat{Y}$ such that $\left.\hat{f}\right|_{X}=f$, where $\eta: X \rightarrow\left(\hat{X}, d_{\hat{X}}\right)$ and $\varphi: Y \rightarrow\left(\hat{Y}, d_{\hat{Y}}\right)$ are completions.
(3) If X has completions \hat{X} and $\eta: X \rightarrow Y$, then \hat{X} and Y are isometrically isomorphic.

Proof. (1) Fix $x_{0} \in X$ and define $\eta: X \rightarrow C_{b}(X, \mathbb{R})$ by $x \mapsto f_{x}$, where $f_{x}: X \rightarrow \mathbb{R}$ is defined by $y \mapsto d_{X}(x, y)-d_{X}\left(y, x_{0}\right)$. Recall that $C_{b}(X, \mathbb{R})$ is a metric space with the metric induced by $\|\cdot\|_{\infty}$. Since $f_{x}(y)=d_{X}(x, y)-d_{X}\left(y, x_{0}\right) \leq d_{X}\left(x, x_{0}\right), f_{x}$ is bounded. Since d_{X} is continuous, f_{x} is continuous. Therefore, $f_{x} \in C_{b}(X, \mathbb{R})$. Let $x_{1}, x_{2}, y \in X$. Then $f_{x_{1}}(y)-f_{x_{2}}(y)=d_{X}\left(x_{1}, y\right)-d_{X}\left(y, x_{2}\right)$, which implies that $\left|f_{x_{1}}(y)-f_{x_{2}}(y)\right| \leq d_{X}\left(x_{1}, x_{2}\right)$. Observe that equality is attained if $y=x_{2}$. Therefore, $\left\|f_{x_{1}}-f_{x_{2}}\right\|_{\infty}=d_{X}\left(x_{1}, x_{2}\right)$, which implies that η is an isometry. Let $\hat{X}=\overline{\eta(X)}$. Since $\left(C_{b}(X, \mathbb{R}),\|\cdot\|_{\infty}\right)$ is a Banach space and \hat{X} is closed, \hat{X} is complete, which implies that \hat{X} is a completion of X.
(2) Identify X with $\eta(X)$, identify Y with $\varphi(Y)$, let $\hat{x} \in \hat{X}$, and let $\varepsilon>0$. Since X is dense in \hat{X}, there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X that converges to \hat{x}. Since f is uniformly continuous, there is a $\delta>0$ such that for all $x, x^{\prime} \in X$ with $d_{\hat{X}}\left(x, x^{\prime}\right)<\delta, d_{\hat{Y}}\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon$. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, there is an $n_{0} \in \mathbb{N}$ such that $d_{\hat{X}}\left(x_{m}, x_{n}\right)<\delta$ whenever $m, n \geq n_{0}$, which implies that $d_{\hat{Y}}\left(f\left(x_{m}\right), f\left(x_{n}\right)\right)<\varepsilon$ whenever $m, n \geq n_{0}$, which in turn implies that $\left(f\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is Cauchy and thus converges to an element of \hat{Y}. Extend f to \hat{f} by defining $\hat{f}(\hat{x})=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$.

To see that \hat{f} is well defined, let $\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}}$ be a sequence in X that converges to \hat{x}. Then, by the previous argument, $\left(\hat{f}\left(x_{n}^{\prime}\right)\right)_{n \in \mathbb{N}}$ is Cauchy, which implies that $\left(\hat{f}\left(x_{1}\right), \hat{f}\left(x_{1}^{\prime}\right), \hat{f}\left(x_{2}\right), \hat{f}\left(x_{2}^{\prime}\right), \ldots\right)$ is Cauchy and converges to \hat{x} since its subsequence $\left(\hat{f}\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ converges to \hat{x}, which in turn implies that $\left(\hat{f}\left(x_{n}^{\prime}\right)\right)_{n \in \mathbb{N}}$ converges to \hat{x}.

To see that $\left.\hat{f}\right|_{X}=f$, let $x \in X$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be such that $x_{n}=x$ for all $n \in \mathbb{N}$. Then $\hat{f}(x)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$.

To see that \hat{f} is uniformly continuous, let $\varepsilon>0$. Since $\left.\hat{f}\right|_{X}$ is uniformly continuous, there is a $\delta>0$ such that for all $x, y \in X$ with $d_{\hat{X}}(x, y)<\delta, d_{\hat{Y}}(\hat{f}(x), \hat{f}(y))<\varepsilon / 3$. Let $\hat{x}, \hat{y} \in \hat{X}$ with $d_{\hat{X}}(\hat{x}, \hat{y})<\delta / 3$. Then there are sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X converging to \hat{x}
and \hat{y}, respectively, which implies that there is an $n_{0} \in \mathbb{N}$ such that $d_{\hat{X}}\left(x_{n}, \hat{x}\right)<\delta / 3$ and $d_{\hat{X}}\left(y_{n}, \hat{y}\right)<\delta / 3$ whenever $n \geq n_{0}$. Since $d_{\hat{X}}\left(x_{n}, y_{n}\right) \leq d_{\hat{X}}\left(x_{n}, \hat{x}\right)+d_{\hat{X}}(\hat{x}, \hat{y})+d_{\hat{X}}\left(\hat{y}, y_{n}\right)<\delta$ whenever $n \geq n_{0}, d_{\hat{Y}}\left(\hat{f}\left(x_{n}\right), \hat{f}\left(y_{n}\right)\right)<\varepsilon / 3$ whenever $n \geq n_{0}$. Since $\left(\hat{f}\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ and $\left(\hat{f}\left(y_{n}\right)\right)_{n \in \mathbb{N}}$ converge to $\hat{f}(\hat{x})$ and $\hat{f}(\hat{y})$, respectively, there is an $N_{0} \in \mathbb{N}$ such that $d_{\hat{Y}}\left(\hat{f}\left(x_{n}\right), \hat{f}(\hat{x})\right)<$ $\varepsilon / 3$ and $d_{\hat{Y}}\left(\hat{f}\left(y_{n}\right), \hat{f}(\hat{y})\right)<\varepsilon / 3$ whenever $n \geq N_{0}$. Letting $N=\max \left\{n_{0}, N_{0}\right\}$ yields that $d_{\hat{Y}}(\hat{f}(\hat{x}), \hat{f}(\hat{y})) \leq d_{\hat{Y}}\left(\hat{f}(\hat{x}), \hat{f}\left(x_{n}\right)\right)+d_{\hat{Y}}\left(\hat{f}\left(x_{n}\right), \hat{f}\left(y_{n}\right)\right)+d_{\hat{Y}}\left(\hat{f}\left(y_{n}\right), \hat{f}(\hat{y})\right)<\varepsilon$.

To see that \hat{f} is unique, let $h: \hat{X} \rightarrow \hat{Y}$ be a uniformly continuous extension of f and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X converging to $\hat{x} \in \hat{X}$. Since h is continuous, $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h\left(\lim _{n \rightarrow \infty} x_{n}\right)=$ $h(\hat{x})$. Since $h\left(x_{n}\right)=f\left(x_{n}\right)$ for all $n \in \mathbb{N}, h(\hat{x})=\lim _{n \rightarrow \infty} h\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\hat{f}(\hat{x})$.
(3) Identify X with $\eta(X)$. To see that η is uniformly continuous, let $\varepsilon=\delta>0$ and observe that if $x, y \in X$ are such that $d_{X}(x, y)<\delta$, then $d_{Y}(\eta(x), \eta(y))=d_{X}(x, y)<\delta=\varepsilon$ since η is an isometry. Moreover, observe that the completion of a complete metric space is its identity map. Therefore, η extends to $\hat{\eta}: \hat{X} \rightarrow Y$.

To see that $\hat{\eta}$ is an isometry, let $\hat{x}, \hat{y} \in \hat{X}$. Then there are sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in X that converge to \hat{x} and \hat{y}, respectively. Therefore,

$$
d_{\hat{X}}\left(x_{n}, y_{n}\right)=d_{X}\left(x_{n}, y_{n}\right)=d_{Y}\left(\eta\left(x_{n}\right), \eta\left(y_{n}\right)\right)=d_{\hat{Y}}\left(\eta\left(x_{n}\right), \eta\left(y_{n}\right)\right),
$$

and taking the limit as n approaches infinity yields that $d_{\hat{X}}(\hat{x}, \hat{y})=d_{\hat{Y}}(\eta(\hat{x}), \eta(\hat{y}))$.
As above, $\eta^{-1}: \eta(X) \rightarrow X$ extends to an isometry $\widehat{\eta^{-1}}: Y \rightarrow \hat{X}$. Therefore, $\widehat{\eta^{-1}} \circ \hat{\eta}: \hat{X} \rightarrow \hat{X}$ is an extension of the identity map on X, which implies that $\widehat{\eta^{-1}} \circ \hat{\eta}: \hat{X} \rightarrow \hat{X}$ is the identity map on \hat{X}. Similarly, $\hat{\eta} \circ \widehat{\eta^{-1}}: Y \rightarrow Y$ is the identity map on Y. Therefore, $\hat{\eta}$ is an isometric isomorphism.

To visualize the functions f_{x} constructed in the proof of (1) above, let $X=\mathbb{Q}$ and let $x_{0}=0$. Then the graphs of f_{-3} and f_{2} are as follows:

Moreover, the graph of $\left|f_{-3}-f_{2}\right|$ is as follows:

Therefore, $\sup _{x \in \mathbb{Q}}\left|f_{-3}(x)-f_{2}(x)\right|=5$, which shows us that $|-3-2|=\left\|f_{-3}-f_{2}\right\|_{\infty}$.

