Functional Analysis, Math 7320 Lecture Notes from Septempber 6, 2016

taken by Worawit Tepsan

Recall the theorem from the previous lecture:
1.3.2 Theorem. Let X be a metric space. Then
(i) X has a completion $\eta: X \rightarrow \hat{X}$.
(ii) If $f: X \rightarrow Y$ is uniformly continuous and Y has a completion \hat{Y}, then there exists a unique (uniformly) continuous map $\hat{f}: \hat{X} \rightarrow \hat{Y}$ such that $\left.\hat{f}\right|_{X}=f$.
(iii) If $\eta: X \rightarrow \hat{X}$ and $f: X \rightarrow Y$ are completions, then $\hat{f}: \hat{X} \rightarrow Y$ is isometric isomorphism.
1.3.3 Remarks. (1) Since a metric space X is dense in its completion \hat{X}, we can identify an element of $x \in \hat{X}$ to be a sequence $\left(x_{n}\right)$ in X such that $\lim _{n \rightarrow \infty} x_{n}=x$.
(2) Let $x, y \in \hat{X}$ and suppose that $\left(x_{n}\right)$ and (y_{n}) are sequences in X converging to x and y respectively. If d is a metric on X and \hat{d} is the extension of the metric d in \hat{X}. We have $\hat{d}\left(x_{n}, y_{n}\right)=d\left(x_{n}, y_{n}\right)$ for $n \in \mathbb{N}$. Thus,

$$
\begin{aligned}
\left|d\left(x_{n}, y_{n}\right)-\hat{d}(x, y)\right| & =\left|\hat{d}\left(x_{n}, y_{n}\right)-\hat{d}\left(x_{n}, y\right)+\hat{d}\left(x_{n}, y\right)-\hat{d}(x, y)\right| \\
& \leq\left|\hat{d}\left(x_{n}, y_{n}\right)-\hat{d}\left(x_{n}, y\right)\right|+\left|\hat{d}\left(x_{n}, x\right)-\hat{d}(x, y)\right|
\end{aligned}
$$

(By the property of a metric: $d(a, b)-d(a, c) \leq d(b, c)$)

$$
\leq\left|\hat{d}\left(y_{n}, y\right)\right|+\left|\hat{d}\left(x_{n}, x\right)\right|
$$

Since $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in $\hat{X},\left|d\left(x_{n}, y_{n}\right)-\hat{d}(x, y)\right| \rightarrow 0$ as $n \rightarrow \infty$, i.e., $\hat{d}(x, y)=$ $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$.
(3) The metric in a normed space $(X,\|\cdot\|)$ is $d(a, b)=\|a-b\|$ for $a, b \in X$. Following from the above,

$$
\hat{d}(x, y)=\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|
$$

is the metric on \hat{X}.
(4) Let $x \in \hat{X}$ and $\left(x_{n}\right)$ be a sequence in X such that $\lim _{n \rightarrow \infty} x_{n}=x$. Then, $\lim _{n \rightarrow \infty} \lambda x_{n}=$ λx.

Proof. As $n \rightarrow \infty$,

$$
\hat{d}\left(\lambda x_{n}, \lambda x\right)=\lim _{n \rightarrow \infty}\left\|\lambda x_{n}-\lambda x\right\|=\lim _{n \rightarrow \infty}|\lambda|\left\|x_{n}-x\right\|=|\lambda| \lim _{n \rightarrow \infty}\left\|x_{n}-x\right\| \rightarrow 0
$$

We know that a normed space is a metric space. Thus, it has a completion. Interesting questions are that "whether the completion of a normed space is a normed space" and "whether the extension of a continuous linear is a linear map." These two questions will be answered by the next two corollaries.
1.3.4 Corollary. If $(X,\|\cdot\|)$ is a normed space, then its completion \hat{X} is a Banach space in which X is dense.

Proof. By the previous theorem, X has a completion \hat{X} and X is dense in \hat{X}. We need to show that \hat{X} is also a normed space. (i) First, we show that \hat{X} is a vector space. Let $x, y \in \hat{X}$ and $\lambda \in \mathbb{K}$. There are sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X converging to x and y respectively. Define

$$
x+y=\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right),
$$

and

$$
\lambda x=\lim _{n \rightarrow \infty} \lambda x_{n} .
$$

The definition is independent with the choice of sequences. Because $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences, its addition is a Cauchy sequence. Also, by multiplying with a scalar with a sequence, it is also a Cauchy sequence. Since \hat{X} is complete, limits of those sequence exist. Thus, the above definition is well-defined. Additive identity and scalar multiplication identity of \hat{X} are obtained directly from the identities of X. The fact that \hat{X} is a vector space follow from the properties of limit. For example, we show that $x+y=y+x$.

$$
x+y=\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty}\left(y_{n}+x_{n}\right)=y+x .
$$

The other axioms can be proved similarly. (ii) Since $\|\cdot\|: X \rightarrow \mathbb{R}$ is uniformly continuous, by the extension of (uniformly) continuous of $\|\cdot\|$, we have $\|\hat{\cdot}\|: \hat{X} \rightarrow \mathbb{R}$ is also uniformly continuous. By the continuity of $\|\hat{\cdot}\|$, we can pass the limit inside or outside $\|\hat{\cdot}\|$. Thus, for any $x \in \hat{X}$ and $\left(x_{n}\right)$ a sequence in X converging to x,

$$
\|\hat{x}\|=\left\|\lim _{n \rightarrow \infty} x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\hat{x_{n}}\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}\right\| .
$$

The fact that $\|\hat{\cdot}\|$ is a norm following from the limit properties and norm axioms of $\|\cdot\|$. For instant, we show that $\|x \hat{+} y\| \leq\|\hat{x}\|+\|\hat{y}\|$. Let $x, y \in \hat{X}$. Then, by the density of X in \hat{X}, there are sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X converging to x and y respectively. Then,

$$
\|x \hat{+} y\|=\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\| \leq \lim _{n \rightarrow \infty}\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|+\lim _{n \rightarrow \infty}\left\|y_{n}\right\|=\|\hat{x}\|+\|\hat{y}\| .
$$

Define $\tilde{d}(x, y)=\|x \hat{-} y\|$, by the remark (1.3.3) number (3), both \tilde{d} and \hat{d} coincide.
1.3.5 Corollary. If $A: X \rightarrow Y$ is a continuous linear map from a normed space X to a Banach space Y, then there is a unique linear extension $\hat{A}: \hat{X} \rightarrow Y$.

Proof. Since a linear continuous map is uniformly continuous, there is a unique continuous map $\hat{A}: \hat{X} \rightarrow Y$. Since \hat{A} is continuous, we can pass through the limit inside or outside the map \hat{A}. Therefore, for any $x \in \hat{X}$ and $\left(x_{n}\right)$ a sequence in X converging to x,

$$
\hat{A}(x)=\hat{A}\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} \hat{A}\left(x_{n}\right)=\lim _{n \rightarrow \infty} A\left(x_{n}\right) .
$$

We still need to show that the map \hat{A} is a linear map. Let $x, y \in \hat{X}$ and $\lambda \in \mathbb{K}$. Then, by the density of X in \hat{X}, there is a sequence $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in X converge to x and y respectively. Thus, by limit properties and linearity of A, we have

$$
\begin{aligned}
\hat{A}(\lambda x+y) & =\lim _{n \rightarrow \infty}\left(A\left(\lambda x_{n}+y_{n}\right)\right)=\lim _{n \rightarrow \infty}\left(\lambda A\left(x_{n}\right)+A\left(y_{n}\right)\right)=\lambda \lim _{n \rightarrow \infty} A\left(x_{n}\right)+\lim _{n \rightarrow \infty} A\left(y_{n}\right) \\
& =\lambda \hat{A}(x)+\hat{A}(y) .
\end{aligned}
$$

1.3.6 Remark. Norms of the linear map A and its extension \hat{A} from the previous corollary are equal. To avoid confusion, we denote

- $\|\cdot\|_{X}$ is the norm in X, and $\|\cdot\|_{\hat{X}}$ is its extended complete norm in \hat{X}, and $\|\cdot\|_{Y}$ is the norm in Y.
- A is the linear map in X, and \hat{A} is the extended linear map in \hat{X}.

We want to show that $\|A\|_{X}=\|\hat{A}\|_{\hat{X}}$.
Proof. Let $x \in \hat{X}$ and $\left(x_{n}\right)$ be a sequence in X converging to x. Then, for all $n \in \mathbb{N}$,

$$
\left\|A\left(x_{n}\right)\right\|_{Y} \leq\|A\|_{X}\left\|x_{n}\right\|_{X}
$$

By continuity of $\|\cdot\|$, by taking limit $n \rightarrow \infty$ in the previous inequality,

$$
\lim _{n \rightarrow \infty}\left\|A\left(x_{n}\right)\right\|_{Y}=\left\|\lim _{n \rightarrow \infty} A\left(x_{n}\right)\right\|=\|\hat{A}(x)\|_{Y} \leq \lim _{n \rightarrow \infty}\|A\|_{X}\left\|x_{n}\right\|_{X}=\|A\|_{X}\|x\|_{\hat{X}}
$$

Thus, $\|\hat{A}\|_{\hat{X}} \leq\|A\|_{X}$. Conversely, for any $x \in X$, we have $\|x\|_{X}=\|x\|_{\hat{X}}$ and $\|A(x)\|_{X}=$ $\|\hat{A}(x)\|_{\hat{X}}$. Since supreme in a smaller set is less than a bigger one, and $X \subset \hat{X}$,

$$
\|A\|_{X}=\sup _{0 \neq x \in X} \frac{\|A x\|_{Y}}{\|x\|_{X}}=\sup _{0 \neq x \in X} \frac{\|\hat{A}(x)\|_{Y}}{\|x\|_{\hat{X}}} \leq \sup _{0 \neq x \in \hat{X}} \frac{\|\hat{A} x\|_{Y}}{\|x\|_{\hat{X}}}=\|\hat{A}\|_{\hat{X}} .
$$

In conclusion, $\|A\|=\|\hat{A}\|_{\hat{X}}$.
In many cases, a function on a completion of a normed space is abstract and difficult to study. Thus, it is practical to determine it by a function of the normed space that extends to that function instead. Most behavior of a function on Banach space can be determined by a function on a normed space that extends to that Banach space.
1.3.7 Examples. (a) Let $X=C_{c}\left(\mathbb{R}^{n}\right)$, the space of continuous function with compact support on \mathbb{R}^{n}, i.e., $\operatorname{supp}\{f\}=\overline{\left\{x \in \mathbb{R}^{n}: f(x) \neq 0\right\}}$ is bounded. Then,

$$
\|f\|_{p}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} d x\right)^{1 / p}
$$

is a norm. Then, the completion of $C_{c}\left(\mathbb{R}^{n}\right)$ is called $L^{p}\left(\mathbb{R}^{n}\right)$.
(b) Let $f \in C([a, b])$ and $K:[a, b] \times[a, b] \rightarrow \mathbb{K}$ be continuous, then $T_{k}: f \mapsto T_{K} f$ defined by

$$
T_{K} f(x)=\int_{a}^{b} K(x, y) f(y) d y
$$

is continuous with respect to the norm $\|\cdot\|_{p}$. We can extend it to $\hat{T_{K}}: L^{p}([a, b]) \rightarrow$ $L^{p}([a, b])$.

Proof. First, we show that $T f(x)$ is continuous.

$$
\left|T f(x)-T f\left(x_{0}\right)\right|=\left|\int_{a}^{b}\left(K(x, y)-K\left(x_{0}, y\right)\right) f(y) d y\right|
$$

Since K is a continuous on compact set, it is also a uniformly continuous. Thus, for $\varepsilon>0$, and $\left|x-x_{0}\right|$ is sufficiently small, $\left|K(x, y)-K\left(x_{0}, y\right)\right|<\varepsilon$ for every $y \in[a, b]$. Since f is continuous on a compact set $[a, b]$, there is $M \geq 0$ such that $|f(x)| \leq M$ for all $x \in[a, b]$. Thus, $\left|\int_{a}^{b} f(y) d y\right| \leq \int_{a}^{b} M d x=M|b-a|$ for some $M \geq 0$. Thus,

$$
\left|T f(x)-T f\left(x_{0}\right)\right| \leq\left|\varepsilon \int_{a}^{b} f(y) d y\right| \leq M|b-a| \varepsilon
$$

Thus, $T: C([a, b]) \rightarrow C([a, b])$. By the linearity of integration, T is linear map. To show that T is continuous with respect to $\|\cdot\|_{p}$, we show that it is a bounded operator. For $f \in C([a, b])$ such that $\|f\|_{p}=1$,
$\left(\|T f\|_{p}\right)^{p}=\int_{a}^{b}|T f(x)|^{p} d x=\int_{a}^{b}\left|\int_{a}^{b} K(x, y) f(y) d y\right|^{p} d x$
(By Holder inequality, where $1 / p+1 / q=1$)

$$
\begin{aligned}
& \leq \int_{a}^{b}\left(\int_{a}^{b}|K(x, y)|^{q} d y\right)^{p / q} \int_{a}^{b}|f(y)|^{p} d y d x=\int_{a}^{b}\left(\int_{a}^{b}|K(x, y)|^{q} d y\right)^{p / q}\|f\|_{p}^{p} d x \\
& \text { (Since } \left.\|f\|_{p}=1\right) \\
& =\int_{a}^{b}\left(\int_{a}^{b}|K(x, y)|^{q} d y\right)^{p / q} d x .
\end{aligned}
$$

Since $K(x, y)$ is continuous on $[a, b] \times[a, b]$ which is compact, there is $N \geq 0$ such that $|K(x, y)| \leq N$ for all $(x, y) \in[a, b] \times[a, b]$. Thus,

$$
\begin{aligned}
\int_{a}^{b}\left(\int_{a}^{b}|K(x, y)|^{q} d y\right)^{p / q} d x & \leq \int_{a}^{b}\left(\int_{a}^{b} M^{q} d y\right)^{p / q} d x=\int_{a}^{b}\left(M^{q}(b-a)\right)^{p / q} d x \\
& =M^{1 / p}(b-a)^{1+p / q}
\end{aligned}
$$

Thus T is bounded i.e., continuous with respect to $\|\cdot\|_{p}$.

1.4 Generating Topology

1.4.8 Definition. Let X be a set with topologies σ and τ, then we say
(a) τ is finer than σ if $\tau \supset \sigma$, and
(b) τ is coarser than σ if $\tau \subset \sigma$.
1.4.9 Example. For any set X, the discrete topology $\tau=P(X)$ is the finest topology on X and the trivial topology $\tau=\{\emptyset, X\}$ is the coarsest topology on X.
1.4.10 Lemma. If $\left\{\tau_{i}: i \in I\right\}$ are a collection of topologies on X, then $\tau=\bigcap_{i \in I} \tau_{i}$ is the finest topology that is coarser than each τ_{i}.

Proof. First, we prove that τ satisfies all the axioms of topology. (i) Since \emptyset and X are in τ_{i} for all $i \in I, \emptyset$ and X are also elements in $\tau=\bigcap_{i \in I} \tau_{i}$. (ii) Next, let U and V is open in (X, τ). Thus, $U, V \in \tau_{i}$ for each $i \in I$. Since τ_{i} is a topology for each $i \in I, U \cap V \in \tau_{i}$ for each $i \in I$. Thus, $U \cap V \in \bigcap_{i \in I} \tau_{i}=\tau$. (iii) Let $\left\{U_{\alpha}\right\}_{\alpha \in J}$ be a collection of open sets in (X, τ). Thus, $U_{\alpha} \in \tau_{i}$ for all $\alpha \in J$ and $i \in I$. Since, for each $i \in I, \tau_{i}$ is a topology, $\bigcup_{\alpha \in J} U_{\alpha} \in \tau_{i}$ for all $i \in I$. Thus, $\bigcup_{\alpha \in J} U_{\alpha} \in \bigcap_{i \in I} \tau_{i}=\tau$. In conclusion, by $(i),(i i)$ and (iii), τ is a topology on X. Now, we show that τ is the finest topology that is coarser than τ_{i} for every $i \in I$. Let σ be a topology on X that is coarser than τ_{i} for every $i \in I$. Let $U \in \sigma$. Since σ is coarser than τ_{i} for each $i \in I, U \in \tau_{i}$ for every $i \in I$. Thus, $U \in \bigcap_{i \in I} \tau_{i}=\tau$. Thus, $\sigma \subset \tau$.
1.4.11 Definition. Let $\mathcal{A} \subset P(X)$ and $I=\{\sigma: \mathcal{A} \subset \sigma$ and σ is a topology on $X\}$, the set of all topologies containing \mathcal{A}. Define

$$
<\mathcal{A}>:=\bigcap_{\sigma \in I} \sigma .
$$

We call $<\mathcal{A}>$ the topology generated by \mathcal{A} and we call \mathcal{A} a generating set of the topology $<\mathcal{A}\rangle$. If the union of all elements in \mathcal{A} is X, it is called a subbasis. Thus, for any $\mathcal{A} \subset P(X)$, we can define $\mathcal{A}^{\prime}=\mathcal{A} \cup\{X\}$. Then \mathcal{A}^{\prime} is a subbasis and both \mathcal{A} and \mathcal{A}^{\prime} generate the same topology. Also, the set \mathcal{A} is called a basis of a topology in X if each open set in X is a union of sets in \mathcal{A}.
1.4.12 Remark. Because $<\mathcal{A}>$ is the intersection of topologies, by the previous lemma, $<\mathcal{A}\rangle$ is a topology on X, i.e., the above definition is well-defined. Also, $<\mathcal{A}>$ is the coarsest topology containing all sets in \mathcal{A}.

Proof. Let τ be a topology containing \mathcal{A}. Thus, $\tau \in\{\sigma: \mathcal{A} \subset \sigma$, and σ is a topology $\}=I$. Thus, $<\mathcal{A}>=\bigcap_{\sigma \in I} \sigma \subset \tau$. Thus, $<\mathcal{A}>$ is coarser than any topology containing \mathcal{A} i.e., it is the coarsest topology containing \mathcal{A}.
1.4.13 Examples. (i) The topology generated by empty set is the trivial topology, i.e., $<\emptyset>=$ $\{\emptyset, X\}$ and the topology generated by $P(X)$ is discrete topology, i.e., $<P(X)>=P(X)$.
ii) Let $\mathcal{A}=\left\{B_{r}(x) \subset \mathbb{R}^{n}: x \in \mathbb{R}^{n}\right.$ and $\left.r>0\right\}$, the collection of open balls in \mathbb{R}^{n}. Then $<\mathcal{A}>$ is the standard topology on \mathbb{R}^{n}.
1.4.14 Remark. Let \mathcal{A} be a basis for a topology τ on X, i.e., each open set in τ is a union of elements in \mathcal{A}. Then $\tau=<\mathcal{A}>$.

Proof. Since \mathcal{A} is a basis of τ, all elements in \mathcal{A} are in τ. Since $<\mathcal{A}>$ is the coarsest topology containing $\mathcal{A},<\mathcal{A}>\subset \tau$. Conversely, let $U \in \tau$. Then $U=\cup_{\alpha \in J} A_{\alpha}$ for some $A_{\alpha} \in \mathcal{A}, \alpha \in J$. Since $A_{\alpha} \in \mathcal{A}$ for all $\alpha \in J$ and $<\mathcal{A}>$ is a topology, by the axiom of topology, $U=\cup_{\alpha \in J} A_{\alpha} \in<\mathcal{A}>$.
1.4.15 Remark. Let \mathcal{A} is a subbasis of X. Define \mathcal{B} be the collection of finite intersections of elements of \mathcal{A}. Let τ be the set of unions of elements in \mathcal{B}. Then τ is a topology on X, i.e., \mathcal{B} is a basis for τ. Moreover, $\tau=<\mathcal{A}>$.

Proof. (i) Since \emptyset is zero time intersection of elements in $\mathcal{A}, \emptyset \in \mathcal{B}$. Also, each element in \mathcal{A} is one time intersection of elements in \mathcal{A}, thus it is in \mathcal{B}. Therefore, $\emptyset \in \tau$ and $\bigcup_{A \in \mathcal{A}} A=X \in \tau$. (ii) Let $U, V \in \tau$. Then, $U=\bigcup_{i \in I} B_{i}$ and $V=\bigcup_{j \in J} B_{j}$ where $B_{i}, B_{j} \in \mathcal{B}$ for all $i \in I$ and $j \in J$. Thus, $U \cap V=\bigcup_{i \in I, j \in J}\left(B_{i} \cap B_{j}\right)$. Since B_{i} and B_{j} are finite intersections of elements in \mathcal{A}. $B_{i} \cap B_{j}$ is also a finite intersection of elements in \mathcal{A}. (iii) Let $U_{\alpha} \in \tau$ for $\alpha \in I$. Then $U_{\alpha}=\bigcup_{i_{\alpha} \in I_{\alpha}} B_{i_{\alpha}}$. Then $\bigcup_{\alpha \in I} U_{\alpha}=\bigcup_{i \in \bigcup_{\alpha \in I} I_{\alpha}} B_{i}$. Since $B_{i} \in \mathcal{B}, \bigcup_{\alpha \in I} U_{\alpha} \in \tau$. In conclusion, τ is a topology. From the previos remark, we have that $\tau=\langle\mathcal{B}\rangle$. We will show that $\langle\mathcal{A}>=<\mathcal{B}>$. Since $\mathcal{A} \subset \mathcal{B},<\mathcal{A}>\subset<\mathcal{B}>$. Conversely, let $U \in<\mathcal{B}>$. Then, $U=\bigcup_{\alpha \in I} B_{\alpha}$ for $B_{\alpha} \in \mathcal{B}$ and $\alpha \in I$. Since B_{α} is a finite intersection of elements in \mathcal{A} and $\mathcal{A} \subset<\mathcal{A}>$, by the axiom of topology that finite intersection of open set is open, $B_{\alpha} \in<\mathcal{A}>$. By the axom of topology that union of open sets is open, $U=\bigcup_{\alpha \in I} B_{\alpha} \in<\mathcal{A}>$.

From both remarks, if \mathcal{A} is a subbasis, an elements in $<\mathcal{A}>$ is a union of finite intersection of elements of \mathcal{A}. If \mathcal{A} is not a subbasis, we have $\mathcal{A}^{\prime}=\mathcal{A} \cup\{X\}$ and then $<\mathcal{A}>=<\mathcal{A}^{\prime}>$. ${ }^{1}$ on section 13 .
1.4.16 Definition. Let X be a set and $\left(Y_{i}, \tau_{i}\right)_{i \in I}$ topological spaces.
(a) Given $f_{i}: X \rightarrow Y_{i}$ for each $i \in I$, then

$$
\tau:=<f_{i}^{-1}\left(\tau_{i}\right): i \in I>
$$

is called initial topology associated with $\left(f_{i}, Y_{i}\right)_{i \in I}$.
(b) If $f_{i}: Y_{i} \rightarrow X$ for each $i \in I$, then

$$
\tau:=\left\{U \subset X: f_{i}^{-1}(U) \in \tau_{i} \text { for all } i \in I\right\}
$$

is called the final topology associated with $\left(f_{i}, Y_{i}\right)_{i \in I}$.
1.4.17 Remark. Let $\sigma_{i}=\left\{f_{i}^{-1}(U): U \in \tau_{i}\right\}$. Because f_{i}^{-1} is compatible with unions and intersections, and τ_{i} is a topology on Y_{i} for each $i \in I$, we can prove that $\sigma_{i}=\left\{f_{i}^{-1}(U): U \in \tau_{i}\right\}$ is a topology on X for every $i \in I$. But the union of all σ_{i} might not be a topology. In addition,

[^0]the initial topology is the topology generated by $\mathcal{A}=\bigcup_{i \in I}\left\{f_{i}^{-1}(U): U \in \tau_{i}\right\}=\bigcup_{i \in I} \sigma_{i}$, i.e., the initial topology is
$$
\tau=<\bigcup_{i \in I} \sigma_{i}>
$$

Thus, it is the topology.
In addition, $\sigma_{i}=\left\{U \subset X: f_{i}^{-1}(U) \in \tau_{i}\right\}$. By the properties of f^{-1} which is compatible with unions and intersections, σ_{i} is a topology for every $i \in I$. Moreover, the final topology can be alternatively written as

$$
\tau:=\left\{U \subset X: f_{i}^{-1}(U) \in \tau_{i} \text { for all } i \in I\right\}=\bigcap_{i \in I} \sigma_{i} .
$$

By the Lemma 1.4.10, the final topology is also a topology. In conclusion, the definition of the initial topology and the final topology are well-defined.
1.4.18 Lemma. The initial topology τ on X associated with $\left\{f_{i}: X \rightarrow Y_{i}\right\}$ is the coarsest topology with respect to which all f_{i} are continuous. If Z is a topological space, then $h: Z \rightarrow X$ is continuous if and only if $f_{i} \circ h$ is continuous for each $i \in I$.

Proof. Denote $\sigma_{i}=\left\{f_{i}^{-1}(U): U \in \tau_{i}\right\}$. (i) First, we show that $f_{i}: X \rightarrow Y_{i}$ is continuous for every $i \in I$. Let $U \in \tau_{i}$. Then $f_{i}^{-1}(U) \in \sigma_{i} \subset \bigcup_{i \in I} \sigma_{i}$. The initial topology is the topology generated by $\bigcup_{i \in I} \sigma_{i}$. Thus, it contains all elements in $\bigcup_{i \in I} \sigma_{i}$. Therefore, $f_{i}^{-1}(U)$ is open in the initial topology, i.e., $f_{i}: X \rightarrow Y_{i}$ is continuous for every $i \in I$.
(ii) Next, we show that τ is the coarsest topology which all f_{i} are continuous. Let σ be a topology on X such that $f_{i}: X \rightarrow Y_{i}$ is continuous for every $i \in I$. Let U be open set in Y_{i}. Then, $f_{i}^{-1}(U) \in \sigma$. Thus σ is a topology containing $\bigcup_{i \in I} \sigma_{i}$. Since the initial topology is generated by $\bigcup_{i \in I} \sigma_{i}$ which is the coarsest topology containing $\bigcup_{i \in I} \sigma_{i},<\bigcup_{i \in I} \sigma_{i}>\subset \sigma$.
(iii) Now, we show the last statement. Let $h: Z \rightarrow X$ is continuous. Then $f_{i} \circ h: Z \rightarrow Y_{i}$ is also continuous because it is composed by two continuous functions. Conversely, assume that $h: Z \rightarrow X$ is a map and $f_{i} \circ h: X \rightarrow Y_{i}$ is continuous for every $i \in I$. Let U be open set in the initial topology on X. Thus U is a union of finite intersection of elements in $\bigcup_{i \in I} \sigma_{i}$. Thus, $U=\bigcup_{\alpha \in J} \bigcap_{j=1}^{j_{\alpha}} A_{j}^{\alpha}$ where $A_{j}^{\alpha} \in \bigcup_{i \in I} \sigma_{i}$ for all $\alpha \in J$ and $j=1, \ldots, j_{\alpha}$. Then, $h^{-1}(U)=\bigcup_{\alpha \in J} \bigcap_{j=1}^{j_{\alpha}} h^{-1}\left(A_{j}^{\alpha}\right)$. Since $A_{j}^{\alpha} \in \bigcup \sigma_{i}, A_{j}^{\alpha}=f_{i}^{-1}\left(V_{i}\right)$ for some $i \in I$ and $V_{i} \in \tau_{i}$. Thus, $h^{-1}\left(A_{j}^{\alpha}\right)=h^{-1} \circ f_{i}^{-1}\left(V_{i}\right)=(f \circ h)^{-1}\left(V_{i}\right)$. Since $f_{i} \circ h$ is continuous, $h^{-1}\left(A_{j}^{\alpha}\right)$ is open in Z for each α and $j=1, \ldots, j_{\alpha}$. Thus, $h^{-1}(U)$ which is the union of finite intersection of $h^{-1}\left(A_{j}^{\alpha}\right)$ is open by the axiom of topology.
1.4.19 Lemma. The final topology τ on X associated with $\left\{f_{i}: Y_{i} \rightarrow X: i \in I\right\}$ is the finest topology for which all f_{i} are continuous. If Z is a topological space, then a map $h: X \rightarrow Z$ is continuous if and only if $h \circ f_{i}$ is continuous for each $i \in I$.

Proof. Denote $\sigma_{i}=\left\{U \subset X: f_{i}^{-1}(U) \in \tau_{i}\right\}$. (i) First, we show that $f_{i}: Y_{i} \rightarrow X$ is continuous for every $i \in I$. Let U be open set in X. Then, $f_{i}^{-1}(U) \in \tau_{i}$ for all $i \in I$, i.e., $f_{i}: Y_{i} \rightarrow X$ is continuous.
(ii) Next, we show that the final topology is the finest topology for which all f_{i} is continuous for every $i \in I$. Let σ is a topology on X which $f_{i}: Y_{i} \rightarrow X$ is continuous. Let $U \in \sigma$.

Then $f_{i}^{-1}(U) \in \tau_{i}$ for every $i \in I$. Thus, $U \in\left\{U \subset X: f_{i}^{-1}(U) \in \tau_{i}\right\}$ for every $i \in I$, i.e., $U \in \bigcap_{i \in I} \sigma_{i}$. Thus, $\sigma \subset \tau$, i.e., the final topology is finer that σ.
(iii) Assume that h is continuous. Since the composition of continuous functions is continuous, $h \circ f_{i}: Y_{i} \rightarrow Z$. is also continuous for every $i \in I$. Conversely, assume that $h: X \rightarrow Z$ be a map and $h \circ f_{i}: Y_{i} \rightarrow Z$ is continuous. Let U be open set in Z. Then $\left(h \circ f_{i}\right)^{-1}(U)=f^{-1} \circ h^{-1}(U)$ is open in Y_{i} for each $i \in I$. Thus, $h^{-1}(U) \in \bigcap_{i \in I} \sigma_{i}$. Thus, by the definition of the final topology, $h^{-1}(U)$ is open in the final topology. Hence h is continuous.

[^0]: ${ }^{1}$ For more information about topology basis and subbasis, check out this book: Munkres, J. R. (2000). Topology 2nd. Upper Saddle River, NJ: Prentice Hall, Inc.

