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Recall the theorem from the previous lecture:
1.3.2 Theorem. Let X be a metric space. Then
(i) X has a completionn : X — X.

(i) If f : X — Y is uniformly continuous and Y has a completion Y, then there exists a
unique (uniformly) continuous map f : X — Y such that f|x = f.

(i) Ifn: X — X and f: X — Y are completions, then f : X =Y is isometric isomorphism.

1.3.3 Remarks. (l) Since a metric space X is dense in its completion X, we can identify an
element of x € X to be a sequence (z,) in X such that lim,, ., z, = .

(2) Let 2,y € X and suppose that (x,) and (y,) are sequences in X converging to x and
y respectively. If d is a metric on X and d is the extension of the metric d in X. We have
d(2p, yn) = d(2p, yp) for n € N. Thus,

|d(:€n, yn) - Cz(aj, y)’ = ‘CZ(:UH, yn) - CZ(;L’n, y) + CZ(:L‘n, y) - Cz(aj, y)’
< |d(xm yn) - d(ZEn, y)| + |d($n, l‘) - d(I, y)|
(By the property of a metric: d(a,b) — d(a,c) < d(b,c))

< |d(Yn,y)| + |d(20, )]

~ ~

Since z, — z and y, — y in X, |[d(xn, yn) — d(z,y)] — 0 as n — oo, ie, dz,y) =
limy, 00 d(Z0, Yn)-

(3) The metric in a normed space (X, || -||) is d(a,b) = ||a —b|| for a,b € X. Following from
the above,

~

() = Tim [, — o

is the metric on X
(4) Let z € X and (z,,) be a sequence in X such that lim,, ,,, x, = . Then, lim,, o, Az, =
AT.

Proof. As n — oo,

A~

d(Azp, A\x) = lim [|[Az, — A\z|| = lim |A||z, — 2| = || im ||z, — x| — 0.
n—00 n—00 n—00



We know that a normed space is a metric space. Thus, it has a completion. Interesting
questions are that “whether the completion of a normed space is a normed space” and “whether
the extension of a continuous linear is a linear map.” These two questions will be answered by
the next two corollaries.

1.3.4 Corollary. If (X, || - ||) is a normed space, then its completion X is a Banach space in
which X is dense.

Proof. By the previous theorem, X has a completion X and X is dense in X. We need to show
that X is also a normed space. (i) First, we show that X is a vector space. Let 2,y € X and
A € K. There are sequences (z,,) and (y,) in X converging to = and y respectively. Define

r+y= h_}m (Tn + Yn),

and

Az = lim A\z,.
n—oo

The definition is independent with the choice of sequences. Because (x,) and (y,) are Cauchy
sequences, its addition is a Cauchy sequence. Also, by multiplying with a scalar with a sequence,
it is also a Cauchy sequence. Since Xis complete, limits of those sequence exist. Thus, the above
definition is well-defined. Additive identity and scalar multiplication identity of X are obtained
directly from the identities of X. The fact that X is a vector space follow from the properties of
limit. For example, we show that x +y =y + x.

Tty = lim (2, +yp) = lim (y, +z,) =y + 2.

The other axioms can be proved similarly. (i) Since || || : X — R is uniformly continuous, by the
extension of (uniformly) continuous of || - ||, we have || - || : X — R is also uniformly continuous.
By the continuity of || - ||, we can pass the limit inside or outside || - ||. Thus, for any 2 € X and

(x,) a sequence in X converging to z,

[l = [ im 2, || = Tim {lz, || = T {2,
n—o00 n—o00 n—00
The fact that H | is a norm following from the limit properties and norm axioms of || - ||. For

instant, we show that ||z + y|| < ||#|| + ||y|l. Let 2,y € X. Then, by the density of X in X,
there are sequences (x,,) and (y,) in X converging to x and y respectively. Then,

e oll = i iz + gall < lm (ol + ) = Y ]l + Y Jlal] = 2] + 1],

Define d(z,y) = ||z — y (1.3.3) number (3), both d and d coincide. O

1.3.5 Corollary. If A: X — Y is a continuous linear map from a normed space X to a Banach
space Y, then there is a unique linear extension A : X — Y.



Proof. Since a linear continuous map is uniformly continuous, there is a unique continuous map
A:X Y. Since A is ‘continuous, we can pass through the limit inside or outside the map A.
Therefore, for any = € X and (x,) a sequence in X converging to z,

A(z) = A(lim ,) = lim A(z,) = lim A(z,).

n—oo n—oo n—o0

We still need to show that the map A'is a linear map. Let x,y € X and A € K. Then, by the
density of X in X, there is a sequence (z,) and (y,) in X converge to = and y respectively.
Thus, by limit properties and linearity of A, we have

Az +y) = lim (A\z, +up)) = lim (ANA(z,) + A(y,)) = X lim A(z,) + lim A(y,)
n—00 n—00 n—00 n—00
= MA(z) 4+ A(y).
[

1.3.6 Remark. Norms of the linear map A and its extension A from the previous corollary are
equal. To avoid confusion, we denote

e || -|lx is the norm in X, and | - || is its extended complete norm in X, and || - ||y is the
norm in Y.

e A is the linear map in X, and A is the extended linear map in X.
We want to show that ||A|x = ||A]| 5.

Proof. Let z € X and (z,,) be a sequence in X converging to . Then, for all n € N,

[A@)ly < [TAllx |2l

By continuity of || -

Tim [[A(e)ly = || im Al = @)y < Tm JAllx el = 1AL el 5
Thus, ||Alls < ||Allx. Conversely, for any z € X, we have ||z|x = ||z]/x and [|A(z)|x =

|A(x)|| ¢. Since supreme in a smaller set is less than a bigger one, and X C X,

[Azlly 1A()lly | Az]ly

Al x =

= ||A] %

ooty 2llx  omeex ollx ogeex Nl

In conclusion, ||A| = ||A]|5. O

In many cases, a function on a completion of a normed space is abstract and difficult to
study. Thus, it is practical to determine it by a function of the normed space that extends to that
function instead. Most behavior of a function on Banach space can be determined by a function
on a normed space that extends to that Banach space.



1.3.7 Examples. (a) Let X = C.(R™), the space of continuous function with compact support

on R", i.e., supp{f} ={x € R*: f(x) # 0} is bounded. Then,

£ = ([ V)P

is a norm. Then, the completion of C.(R") is called L?(R").

Let f € C([a,b]) and K : [a, b] X [a,b] — K be continuous, then T}, : f — Tk f defined by
Tk f(x / K(z,y)f
is continuous with respect to the norm || - ||,. We can extend it to Ty : LP([a,b]) —

LP([a, b]).

Proof. First, we show that 7'f(x) is continuous.

174(e) = TG0 =| [ (K(e,y) = Kl 1) )iyl

Since K is a continuous on compact set, it is also a uniformly continuous. Thus, for £ > 0,
and |z — x| is sufficiently small, |K(z,y) — K(xo,y)| < € for every y € [a,b]. Since f is
continuous on a compact set [a, b], there is M > 0 such that | f(z)| < M for all z € [a, b].
Thus, ]fabf(y)dy\ < ff Mdx = M|b — a| for some M > 0. Thus,

T (2) — Tf(w0)] < |e / F(y)dy| < Mb— ale.

Thus, T': C([a,b]) — C([a,b]). By the linearity of integration, T is linear map. To show
that 7" is continuous with respect to || - ||,, we show that it is a bounded operator. For
f € C([a,b]) such that || f]|, = 1,

(T A1) = / Tf(x)Pds = / / K (e,9) () dy[Pd

(By Holder inequality, where 1/p+1/q = 1)

/ /|ny |qdy / £y |pdyda:—/ab(/ab|K(x,y)|Qdy)p/q||f||gdx

(Sincel| f]l, = 1)

:/a /a|K(a:,y)|qdy "dr.

Since K (x,y) is continuous on [a,b] X [a,b] which is compact, there is N > 0 such that
|K (z,y)| < N for all (z,y) € [a,b] X [a,b]. Thus,

/ab </b K (o)1) e < /ab </b vy = /ab(M"(b — @)

— Ml/p(b _ a)1+p/q'

Thus T is bounded i.e., continuous with respect to || - ||, O



1.4 Generating Topology

1.4.8 Definition. Let X be a set with topologies o and 7, then we say
(a) 7 is finer than o if 7 D o, and
(b) 7 is coarser than o if 7 C 0.

1.4.9 Example. For any set X, the discrete topology 7 = P(X) is the finest topology on X and
the trivial topology 7 = {), X'} is the coarsest topology on X.

1.4.10 Lemma. /f {7; : i € I} are a collection of topologies on X, then T = (,.; 7; is the finest
topology that is coarser than each ;.

Proof. First, we prove that 7 satisfies all the axioms of topology. (i) Since () and X are in 7; for
alli € I, ) and X are also elements in 7 = (,.; 7. (ii) Next, let U and V' is open in (X, 7).
Thus, U,V € 7; for each i € I. Since 7; is a topology for each i € I, UNV & 7; for each i € I.
Thus, UNV € (;c; 7 = 7. (iii) Let {Us}acs be a collection of open sets in (X, 7). Thus,
U, € 7; for all & € J and i € I. Since, for each 7 € I, 7; is a topology, Uaej U, € T; for all
i€1. Thus, J,c;Us € ey 7i = 7. In conclusion, by (i), (i) and (iii), 7 is a topology on X.
Now, we show that 7 is the finest topology that is coarser than 7; for every ¢ € I. Let o be a
topology on X that is coarser than 7; for every i € I. Let U € o. Since o is coarser than ; for
eachie I, Uer foreveryi € I. Thus, U € ﬂign =17. Thus, c C 7. O

1.4.11 Definition. Let A C P(X) and I = {0 : A C o and o is a topology on X}, the set of
all topologies containing A. Define
<A>= ﬂ 0.
oel

We call < A > the topology generated by .4 and we call A a generating set of the topology
< A >. If the union of all elements in A is X, it is called a subbasis. Thus, for any A C P(X),
we can define A" = AU {X}. Then A’ is a subbasis and both A and A’ generate the same
topology. Also, the set A is called a basis of a topology in X if each open set in X is a union
of sets in A.

1.4.12 Remark. Because < A > is the intersection of topologies, by the previous lemma, < A >
is a topology on X, i.e., the above definition is well-defined. Also, < A > is the coarsest topology
containing all sets in A.

Proof. Let T be a topology containing A. Thus, 7 € {¢ : A C o, and o is a topology } = I.
Thus, < A >=1(),c;0 C 7. Thus, < A > is coarser than any topology containing A i.e., it is
the coarsest topology containing A.

O

1.4.13 Examples. (i) The topology generated by empty set is the trivial topology, i.e., < () >=
{0, X} and the topology generated by P(X) is discrete topology, i.e., < P(X) >= P(X).

i) Let A = {B,(x) C R*: x € R*and r > 0}, the collection of open balls in R™. Then
< A > is the standard topology on R".



1.4.14 Remark. Let A be a basis for a topology 7 on X, i.e., each open set in 7 is a union of
elements in A. Then 7 =< A > .

Proof. Since A is a basis of 7, all elements in A are in 7. Since < A > is the coarsest
topology containing A, < A >C 7. Conversely, let U € 7. Then U = U,c A, for some
Ays € A,a € J. Since A, € Aforall @ € J and < A > is a topology, by the axiom of topology,
U=UjecjAs €< A >. O

1.4.15 Remark. Let A is a subbasis of X. Define B be the collection of finite intersections of
elements of A. Let 7 be the set of unions of elements in B. Then 7 is a topology on X, i.e., B
is a basis for 7. Moreover, T =< A > .

Proof. (i) Since () is zero time intersection of elements in A, ) € B. Also, each element in A is
one time intersection of elements in A, thus it is in B. Therefore, ) € 7 and UAeAA =XerT.
(i) Let U,V € 7. Then, U = U; B; and V' = {,.; B; where B;, B; € B for all i € I
and j € J. Thus, UNV = U,c;e;(Bi N Bj). Since B; and B; are finite intersections of
elements in A. B; N B; is also a finite intersection of elements in A. (iii) Let U, € 7 for
a €. Then U, = J; ¢ Bi,. Then J,c; Uy = UiGUaezla B;. Since B; € B, J,e;Ua € 7. In
conclusion, 7 is a topology. From the previos remark, we have that 7 =< B >. We will show
that < A >=< B >. Since A C B, < A >C< B > . Conversely, let U €< B >. Then,
U= Uael B, for B, € B and a € I. Since B, is a finite intersection of elements in A and
A C< A >, by the axiom of topology that finite intersection of open set is open, B, €< A >.
By the axom of topology that union of open sets is open, U = | J,; Bo €< A > . ]

From both remarks, if A is a subbasis, an elements in < A > is a union of finite intersection
of elements of A. If A is not a subbasis, we have A’ = AU {X} and then < A >=< A’ >. !
on section 13.

1.4.16 Definition. Let X be a set and (Y}, 7;);c; topological spaces.
(a) Given f; : X — Y for each i € I, then
T =< f[l(n) ciel >
is called initial topology associated with (f;, Y;)ies-
(b) If f;:Y; — X for each i € I, then
r={UcCX:ffY(U)erforallicl}
is called the final topology associated with (f;,Y;)icr.

1.4.17 Remark. Let o; = {f;'(U) : U € 7;}. Because f; ' is compatible with unions and
intersections, and 7; is a topology on Y; for each i € I, we can prove that o; = {f;*(U) : U € 7}
is a topology on X for every ¢ € I. But the union of all o; might not be a topology. In addition,

'For more information about topology basis and subbasis, check out this book: Munkres, J. R. (2000).
Topology 2nd. Upper Saddle River, NJ: Prentice Hall, Inc.



the initial topology is the topology generated by A = {J,.,{f;'(U) : U € ,} = U, 0i, i€,
the initial topology is
=< Uai > .

iel
Thus, it is the topology.
In addition, o; = {U C X : f;7*(U) € 7;}. By the properties of f~! which is compatible with
unions and intersections, o; is a topology for every ¢ € I. Moreover, the final topology can be
alternatively written as

r={UCX:f'(U)erforalicl}=)o.

i€l

By the Lemma 1.4.10, the final topology is also a topology. In conclusion, the definition of the
initial topology and the final topology are well-defined.

1.4.18 Lemma. The initial topology T on X associated with {f; : X — Y;} is the coarsest
topology with respect to which all f; are continuous. If Z is a topological space, then h : Z — X
is continuous if and only if f; o h is continuous for each i € I.

Proof. Denote o; = {f; '(U) : U € 7;}. (i) First, we show that f; : X — Y; is continuous for
every i € I. Let U € 7;,. Then f,'(U) € 0; C Uies @i- The initial topology is the topology
generated by | J;.; 0;. Thus, it contains all elements in | J,.; 0;. Therefore, f;"(U) is open in
the initial topology, i.e., f; : X — Y] is continuous for every ¢ € I.

(ii) Next, we show that 7 is the coarsest topology which all f; are continuous. Let o be a
topology on X such that f; : X — Y; is continuous for every i € I. Let U be open set in
Y;. Then, f;1(U) € 0. Thus o is a topology containing U,es @i~ Since the initial topology is
generated by J,.; o; which is the coarsest topology containing | J,.; 0i, < U,c; 06 >C 0.

(iii) Now, we show the last statement. Let h: Z — X is continuous. Then foh:Z —Y;
is also continuous because it is composed by two continuous functions. Conversely, assume
that h : Z — X isamap and foh : X — Y, is continuous for every + € I. Let U be
open set in the initial topology on X. Thus U is a union of finite intersection of elements in
Uier oi- Thus, U = U,e; N2 AS where A% € (e, 0 forall a € J and j = 1,..., jo. Then,

-1 _ Jo  p—1( A\ Qi a a _ g1 ;
_flz_h (U)_—1 USEJ j_zllh —(1Aj) Since A f U o, .Aj = f; (VZ) fo!’ some i _el I znc.l Vi € i
us, h™H(A$) = h=' o f (Vi) = (f o h)(V;). Since f; o h is continuous, h™'(A$) is open in
Z foreach awand j =1, ..., jo. Thus, h='(U) which is the union of finite intersection of h~'(A%)
is open by the axiom of topology. O

1.4.19 Lemma. The final topology T on X associated with {f; : Y; — X :i € I} is the finest
topology for which all f; are continuous. If Z is a topological space, then a map h : X — Z is
continuous if and only if h o f; is continuous for each i € I.

Proof. Denote o; = {U C X : f,}(U) € 7;}. (i) First, we show that f; : Y; — X is continuous
for every i € I. Let U be open set in X. Then, f;*(U) € 7, foralli € I, ie., fi:Y; = X is
continuous.

(ii) Next, we show that the final topology is the finest topology for which all f; is continuous
for every i € I. Let o is a topology on X which f; : Y; — X is continuous. Let U € o.



Then f7'(U) € 7; for every i € I. Thus, U € {U C X : f;'(U) € 7,} for every i € I, i.e.,
U € Nier0i- Thus, o C 7, i.e., the final topology is finer that o.

(iii) Assume that & is continuous. Since the composition of continuous functions is continuous,
ho f; . Y; — Z. is also continuous for every i € I. Conversely, assume that h : X — Z be a map
and ho f; : Y; — Z is continuous. Let U be open setin Z. Then (ho f;)~'(U) = f~toh ™ (U) is
open in Y; for each i € I. Thus, hfl(U) € ﬂiel 0;. Thus, by the definition of the final topology,
h=Y(U) is open in the final topology. Hence  is continuous. O



