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Recall the theorem from the previous lecture:

1.3.2 Theorem. Let X be a metric space. Then

(i) X has a completion η : X → X̂.

(ii) If f : X → Y is uniformly continuous and Y has a completion Ŷ , then there exists a
unique (uniformly) continuous map f̂ : X̂ → Ŷ such that f̂ |X = f.

(iii) If η : X → X̂ and f : X → Y are completions, then f̂ : X̂ → Y is isometric isomorphism.

1.3.3 Remarks. (1) Since a metric space X is dense in its completion X̂, we can identify an
element of x ∈ X̂ to be a sequence (xn) in X such that limn→∞ xn = x.

(2) Let x, y ∈ X̂ and suppose that (xn) and (yn) are sequences in X converging to x and
y respectively. If d is a metric on X and d̂ is the extension of the metric d in X̂. We have
d̂(xn, yn) = d(xn, yn) for n ∈ N. Thus,

|d(xn, yn)− d̂(x, y)| = |d̂(xn, yn)− d̂(xn, y) + d̂(xn, y)− d̂(x, y)|
≤ |d̂(xn, yn)− d̂(xn, y)|+ |d̂(xn, x)− d̂(x, y)|
(By the property of a metric: d(a, b)− d(a, c) ≤ d(b, c))

≤ |d̂(yn, y)|+ |d̂(xn, x)|

Since xn → x and yn → y in X̂, |d(xn, yn) − d̂(x, y)| → 0 as n → ∞, i.e., d̂(x, y) =
limn→∞ d(xn, yn).

(3) The metric in a normed space (X, ‖ · ‖) is d(a, b) = ‖a− b‖ for a, b ∈ X. Following from
the above,

d̂(x, y) = lim
n→∞

‖xn − yn‖

is the metric on X̂.
(4) Let x ∈ X̂ and (xn) be a sequence in X such that limn→∞ xn = x. Then, limn→∞ λxn =

λx.

Proof. As n→∞,

d̂(λxn, λx) = lim
n→∞

‖λxn − λx‖ = lim
n→∞

|λ|‖xn − x‖ = |λ| lim
n→∞

‖xn − x‖ → 0.
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We know that a normed space is a metric space. Thus, it has a completion. Interesting
questions are that “whether the completion of a normed space is a normed space” and “whether
the extension of a continuous linear is a linear map.” These two questions will be answered by
the next two corollaries.

1.3.4 Corollary. If (X, ‖ · ‖) is a normed space, then its completion X̂ is a Banach space in
which X is dense.

Proof. By the previous theorem, X has a completion X̂ and X is dense in X̂. We need to show
that X̂ is also a normed space. (i) First, we show that X̂ is a vector space. Let x, y ∈ X̂ and
λ ∈ K. There are sequences (xn) and (yn) in X converging to x and y respectively. Define

x+ y = lim
n→∞

(xn + yn),

and
λx = lim

n→∞
λxn.

The definition is independent with the choice of sequences. Because (xn) and (yn) are Cauchy
sequences, its addition is a Cauchy sequence. Also, by multiplying with a scalar with a sequence,
it is also a Cauchy sequence. Since X̂ is complete, limits of those sequence exist. Thus, the above
definition is well-defined. Additive identity and scalar multiplication identity of X̂ are obtained
directly from the identities of X. The fact that X̂ is a vector space follow from the properties of
limit. For example, we show that x+ y = y + x.

x+ y = lim
n→∞

(xn + yn) = lim
n→∞

(yn + xn) = y + x.

The other axioms can be proved similarly. (ii) Since ‖·‖ : X → R is uniformly continuous, by the

extension of (uniformly) continuous of ‖ · ‖, we have ˆ‖ · ‖ : X̂ → R is also uniformly continuous.

By the continuity of ˆ‖ · ‖, we can pass the limit inside or outside ˆ‖ · ‖. Thus, for any x ∈ X̂ and
(xn) a sequence in X converging to x,

ˆ‖x‖ = ˆ‖ lim
n→∞

xn‖ = lim
n→∞

ˆ‖xn‖ = lim
n→∞

‖xn‖.

The fact that ˆ‖ · ‖ is a norm following from the limit properties and norm axioms of ‖ · ‖. For

instant, we show that ˆ‖x+ y‖ ≤ ˆ‖x‖ + ˆ‖y‖. Let x, y ∈ X̂. Then, by the density of X in X̂,
there are sequences (xn) and (yn) in X converging to x and y respectively. Then,

ˆ‖x+ y‖ = lim
n→∞

‖xn + yn‖ ≤ lim
n→∞

(‖xn‖+ ‖yn‖) = lim
n→∞

‖xn‖+ lim
n→∞

‖yn‖ = ˆ‖x‖+ ˆ‖y‖.

Define d̃(x, y) = ˆ‖x− y‖, by the remark (1.3.3) number (3), both d̃ and d̂ coincide.

1.3.5 Corollary. If A : X → Y is a continuous linear map from a normed space X to a Banach
space Y , then there is a unique linear extension Â : X̂ → Y .

2



Proof. Since a linear continuous map is uniformly continuous, there is a unique continuous map
Â : X̂ → Y . Since Â is continuous, we can pass through the limit inside or outside the map Â.
Therefore, for any x ∈ X̂ and (xn) a sequence in X converging to x,

Â(x) = Â( lim
n→∞

xn) = lim
n→∞

Â(xn) = lim
n→∞

A(xn).

We still need to show that the map Â is a linear map. Let x, y ∈ X̂ and λ ∈ K. Then, by the
density of X in X̂, there is a sequence (xn) and (yn) in X converge to x and y respectively.
Thus, by limit properties and linearity of A, we have

Â(λx+ y) = lim
n→∞

(A(λxn + yn)) = lim
n→∞

(λA(xn) + A(yn)) = λ lim
n→∞

A(xn) + lim
n→∞

A(yn)

= λÂ(x) + Â(y).

1.3.6 Remark. Norms of the linear map A and its extension Â from the previous corollary are
equal. To avoid confusion, we denote

• ‖ · ‖X is the norm in X, and ‖ · ‖X̂ is its extended complete norm in X̂, and ‖ · ‖Y is the
norm in Y .

• A is the linear map in X, and Â is the extended linear map in X̂.

We want to show that ‖A‖X = ‖Â‖X̂ .

Proof. Let x ∈ X̂ and (xn) be a sequence in X converging to x. Then, for all n ∈ N,

‖A(xn)‖Y ≤ ‖A‖X‖xn‖X .

By continuity of ‖ · ‖, by taking limit n→∞ in the previous inequality,

lim
n→∞

‖A(xn)‖Y = ‖ lim
n→∞

A(xn)‖ = ‖Â(x)‖Y ≤ lim
n→∞

‖A‖X‖xn‖X = ‖A‖X‖x‖X̂ .

Thus, ‖Â‖X̂ ≤ ‖A‖X . Conversely, for any x ∈ X, we have ‖x‖X = ‖x‖X̂ and ‖A(x)‖X =

‖Â(x)‖X̂ . Since supreme in a smaller set is less than a bigger one, and X ⊂ X̂,

‖A‖X = sup
0 6=x∈X

‖Ax‖Y
‖x‖X

= sup
06=x∈X

‖Â(x)‖Y
‖x‖X̂

≤ sup
06=x∈X̂

‖Âx‖Y
‖x‖X̂

= ‖Â‖X̂ .

In conclusion, ‖A‖ = ‖Â‖X̂ .

In many cases, a function on a completion of a normed space is abstract and difficult to
study. Thus, it is practical to determine it by a function of the normed space that extends to that
function instead. Most behavior of a function on Banach space can be determined by a function
on a normed space that extends to that Banach space.
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1.3.7 Examples. (a) Let X = Cc(Rn), the space of continuous function with compact support
on Rn, i.e., supp{f} = {x ∈ Rn : f(x) 6= 0} is bounded. Then,

‖f‖p := (

∫
Rn
|f(x)|pdx)1/p

is a norm. Then, the completion of Cc(Rn) is called Lp(Rn).

(b) Let f ∈ C([a, b]) and K : [a, b]× [a, b]→ K be continuous, then Tk : f 7→ TKf defined by

TKf(x) =

∫ b

a

K(x, y)f(y)dy

is continuous with respect to the norm ‖ · ‖p. We can extend it to T̂K : Lp([a, b]) →
Lp([a, b]).

Proof. First, we show that Tf(x) is continuous.

|Tf(x)− Tf(x0)| = |
∫ b

a

(K(x, y)−K(x0, y))f(y)dy|.

Since K is a continuous on compact set, it is also a uniformly continuous. Thus, for ε > 0,
and |x− x0| is sufficiently small, |K(x, y)−K(x0, y)| < ε for every y ∈ [a, b]. Since f is
continuous on a compact set [a, b], there is M ≥ 0 such that |f(x)| ≤M for all x ∈ [a, b].

Thus, |
∫ b
a
f(y)dy| ≤

∫ b
a
Mdx =M |b− a| for some M ≥ 0. Thus,

|Tf(x)− Tf(x0)| ≤ |ε
∫ b

a

f(y)dy| ≤M |b− a|ε.

Thus, T : C([a, b]) → C([a, b]). By the linearity of integration, T is linear map. To show
that T is continuous with respect to ‖ · ‖p, we show that it is a bounded operator. For
f ∈ C([a, b]) such that ‖f‖p = 1,

(‖Tf‖p)p =
∫ b

a

|Tf(x)|pdx =

∫ b

a

|
∫ b

a

K(x, y)f(y)dy|pdx

(By Holder inequality, where 1/p+ 1/q = 1)

≤
∫ b

a

(∫ b

a

|K(x, y)|qdy
)p/q ∫ b

a

|f(y)|pdydx =

∫ b

a

(∫ b

a

|K(x, y)|qdy
)p/q
‖f‖ppdx

(Since‖f‖p = 1)

=

∫ b

a

(∫ b

a

|K(x, y)|qdy
)p/q

dx.

Since K(x, y) is continuous on [a, b] × [a, b] which is compact, there is N ≥ 0 such that
|K(x, y)| ≤ N for all (x, y) ∈ [a, b]× [a, b]. Thus,∫ b

a

(∫ b

a

|K(x, y)|qdy
)p/q

dx ≤
∫ b

a

(∫ b

a

M qdy
)p/q

dx =

∫ b

a

(M q(b− a))p/qdx

=M1/p(b− a)1+p/q.

Thus T is bounded i.e., continuous with respect to ‖ · ‖p.
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1.4 Generating Topology

1.4.8 Definition. Let X be a set with topologies σ and τ , then we say

(a) τ is finer than σ if τ ⊃ σ, and

(b) τ is coarser than σ if τ ⊂ σ.

1.4.9 Example. For any set X, the discrete topology τ = P (X) is the finest topology on X and
the trivial topology τ = {∅, X} is the coarsest topology on X.

1.4.10 Lemma. If {τi : i ∈ I} are a collection of topologies on X, then τ =
⋂
i∈I τi is the finest

topology that is coarser than each τi.

Proof. First, we prove that τ satisfies all the axioms of topology. (i) Since ∅ and X are in τi for
all i ∈ I, ∅ and X are also elements in τ =

⋂
i∈I τi. (ii) Next, let U and V is open in (X, τ).

Thus, U, V ∈ τi for each i ∈ I. Since τi is a topology for each i ∈ I, U ∩ V ∈ τi for each i ∈ I.
Thus, U ∩ V ∈

⋂
i∈I τi = τ. (iii) Let {Uα}α∈J be a collection of open sets in (X, τ). Thus,

Uα ∈ τi for all α ∈ J and i ∈ I. Since, for each i ∈ I, τi is a topology,
⋃
α∈J Uα ∈ τi for all

i ∈ I. Thus,
⋃
α∈J Uα ∈

⋂
i∈I τi = τ. In conclusion, by (i), (ii) and (iii), τ is a topology on X.

Now, we show that τ is the finest topology that is coarser than τi for every i ∈ I. Let σ be a
topology on X that is coarser than τi for every i ∈ I. Let U ∈ σ. Since σ is coarser than τi for
each i ∈ I, U ∈ τi for every i ∈ I. Thus, U ∈

⋂
i∈I τi = τ . Thus, σ ⊂ τ.

1.4.11 Definition. Let A ⊂ P (X) and I = {σ : A ⊂ σ and σ is a topology on X}, the set of
all topologies containing A. Define

< A >:=
⋂
σ∈I

σ.

We call < A > the topology generated by A and we call A a generating set of the topology
< A >. If the union of all elements in A is X, it is called a subbasis. Thus, for any A ⊂ P (X),
we can define A′ = A ∪ {X}. Then A′ is a subbasis and both A and A′ generate the same
topology. Also, the set A is called a basis of a topology in X if each open set in X is a union
of sets in A.

1.4.12 Remark. Because < A > is the intersection of topologies, by the previous lemma, < A >
is a topology on X, i.e., the above definition is well-defined. Also, < A > is the coarsest topology
containing all sets in A.

Proof. Let τ be a topology containing A. Thus, τ ∈ {σ : A ⊂ σ, and σ is a topology } = I.
Thus, < A >=

⋂
σ∈I σ ⊂ τ. Thus, < A > is coarser than any topology containing A i.e., it is

the coarsest topology containing A.

1.4.13 Examples. (i) The topology generated by empty set is the trivial topology, i.e., < ∅ >=
{∅, X} and the topology generated by P (X) is discrete topology, i.e., < P (X) >= P (X).

ii) Let A = {Br(x) ⊂ Rn : x ∈ Rn and r > 0}, the collection of open balls in Rn. Then
< A > is the standard topology on Rn.
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1.4.14 Remark. Let A be a basis for a topology τ on X, i.e., each open set in τ is a union of
elements in A. Then τ =< A > .

Proof. Since A is a basis of τ , all elements in A are in τ . Since < A > is the coarsest
topology containing A, < A >⊂ τ. Conversely, let U ∈ τ. Then U = ∪α∈JAα for some
Aα ∈ A, α ∈ J. Since Aα ∈ A for all α ∈ J and < A > is a topology, by the axiom of topology,
U = ∪α∈JAα ∈< A >.

1.4.15 Remark. Let A is a subbasis of X. Define B be the collection of finite intersections of
elements of A. Let τ be the set of unions of elements in B. Then τ is a topology on X, i.e., B
is a basis for τ . Moreover, τ =< A > .

Proof. (i) Since ∅ is zero time intersection of elements in A, ∅ ∈ B. Also, each element in A is
one time intersection of elements in A, thus it is in B. Therefore, ∅ ∈ τ and

⋃
A∈AA = X ∈ τ.

(ii) Let U, V ∈ τ . Then, U =
⋃
i∈I Bi and V =

⋃
j∈J Bj where Bi, Bj ∈ B for all i ∈ I

and j ∈ J. Thus, U ∩ V =
⋃
i∈I,j∈J(Bi ∩ Bj). Since Bi and Bj are finite intersections of

elements in A. Bi ∩ Bj is also a finite intersection of elements in A. (iii) Let Uα ∈ τ for
α ∈ I. Then Uα =

⋃
iα∈Iα Biα . Then

⋃
α∈I Uα =

⋃
i∈

⋃
α∈I Iα

Bi. Since Bi ∈ B,
⋃
α∈I Uα ∈ τ. In

conclusion, τ is a topology. From the previos remark, we have that τ =< B >. We will show
that < A >=< B >. Since A ⊂ B, < A >⊂< B > . Conversely, let U ∈< B >. Then,
U =

⋃
α∈I Bα for Bα ∈ B and α ∈ I. Since Bα is a finite intersection of elements in A and

A ⊂< A >, by the axiom of topology that finite intersection of open set is open, Bα ∈< A >.
By the axom of topology that union of open sets is open, U =

⋃
α∈I Bα ∈< A > .

From both remarks, if A is a subbasis, an elements in < A > is a union of finite intersection
of elements of A. If A is not a subbasis, we have A′ = A ∪ {X} and then < A >=< A′ >. 1

on section 13.

1.4.16 Definition. Let X be a set and (Yi, τi)i∈I topological spaces.

(a) Given fi : X → Yi for each i ∈ I, then

τ :=< f−1i (τi) : i ∈ I >

is called initial topology associated with (fi, Yi)i∈I .

(b) If fi : Yi → X for each i ∈ I, then

τ := {U ⊂ X : f−1i (U) ∈ τi for all i ∈ I}

is called the final topology associated with (fi, Yi)i∈I .

1.4.17 Remark. Let σi = {f−1i (U) : U ∈ τi}. Because f−1i is compatible with unions and
intersections, and τi is a topology on Yi for each i ∈ I, we can prove that σi = {f−1i (U) : U ∈ τi}
is a topology on X for every i ∈ I. But the union of all σi might not be a topology. In addition,

1For more information about topology basis and subbasis, check out this book: Munkres, J. R. (2000).
Topology 2nd. Upper Saddle River, NJ: Prentice Hall, Inc.
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the initial topology is the topology generated by A =
⋃
i∈I{f

−1
i (U) : U ∈ τi} =

⋃
i∈I σi, i.e.,

the initial topology is

τ =<
⋃
i∈I

σi > .

Thus, it is the topology.
In addition, σi = {U ⊂ X : f−1i (U) ∈ τi}. By the properties of f−1 which is compatible with

unions and intersections, σi is a topology for every i ∈ I. Moreover, the final topology can be
alternatively written as

τ := {U ⊂ X : f−1i (U) ∈ τi for all i ∈ I} =
⋂
i∈I

σi.

By the Lemma 1.4.10, the final topology is also a topology. In conclusion, the definition of the
initial topology and the final topology are well-defined.

1.4.18 Lemma. The initial topology τ on X associated with {fi : X → Yi} is the coarsest
topology with respect to which all fi are continuous. If Z is a topological space, then h : Z → X
is continuous if and only if fi ◦ h is continuous for each i ∈ I.

Proof. Denote σi = {f−1i (U) : U ∈ τi}. (i) First, we show that fi : X → Yi is continuous for
every i ∈ I. Let U ∈ τi. Then f−1i (U) ∈ σi ⊂

⋃
i∈I σi. The initial topology is the topology

generated by
⋃
i∈I σi. Thus, it contains all elements in

⋃
i∈I σi. Therefore, f−1i (U) is open in

the initial topology, i.e., fi : X → Yi is continuous for every i ∈ I.
(ii) Next, we show that τ is the coarsest topology which all fi are continuous. Let σ be a

topology on X such that fi : X → Yi is continuous for every i ∈ I. Let U be open set in
Yi. Then, f−1i (U) ∈ σ. Thus σ is a topology containing

⋃
i∈I σi. Since the initial topology is

generated by
⋃
i∈I σi which is the coarsest topology containing

⋃
i∈I σi, <

⋃
i∈I σi >⊂ σ.

(iii) Now, we show the last statement. Let h : Z → X is continuous. Then fi ◦ h : Z → Yi
is also continuous because it is composed by two continuous functions. Conversely, assume
that h : Z → X is a map and fi ◦ h : X → Yi is continuous for every i ∈ I. Let U be
open set in the initial topology on X. Thus U is a union of finite intersection of elements in⋃
i∈I σi. Thus, U =

⋃
α∈J

⋂jα
j=1A

α
j where Aαj ∈

⋃
i∈I σi for all α ∈ J and j = 1, ..., jα. Then,

h−1(U) =
⋃
α∈J

⋂jα
j=1 h

−1(Aαj ). Since Aαj ∈
⋃
σi, A

α
j = f−1i (Vi) for some i ∈ I and Vi ∈ τi.

Thus, h−1(Aαj ) = h−1 ◦ f−1i (Vi) = (f ◦ h)−1(Vi). Since fi ◦ h is continuous, h−1(Aαj ) is open in
Z for each α and j = 1, ..., jα. Thus, h−1(U) which is the union of finite intersection of h−1(Aαj )
is open by the axiom of topology.

1.4.19 Lemma. The final topology τ on X associated with {fi : Yi → X : i ∈ I} is the finest
topology for which all fi are continuous. If Z is a topological space, then a map h : X → Z is
continuous if and only if h ◦ fi is continuous for each i ∈ I.

Proof. Denote σi = {U ⊂ X : f−1i (U) ∈ τi}. (i) First, we show that fi : Yi → X is continuous
for every i ∈ I. Let U be open set in X. Then, f−1i (U) ∈ τi for all i ∈ I, i.e., fi : Yi → X is
continuous.

(ii) Next, we show that the final topology is the finest topology for which all fi is continuous
for every i ∈ I. Let σ is a topology on X which fi : Yi → X is continuous. Let U ∈ σ.
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Then f−1i (U) ∈ τi for every i ∈ I. Thus, U ∈ {U ⊂ X : f−1i (U) ∈ τi} for every i ∈ I, i.e.,
U ∈

⋂
i∈I σi. Thus, σ ⊂ τ , i.e., the final topology is finer that σ.

(iii) Assume that h is continuous. Since the composition of continuous functions is continuous,
h◦fi : Yi → Z. is also continuous for every i ∈ I. Conversely, assume that h : X → Z be a map
and h◦fi : Yi → Z is continuous. Let U be open set in Z. Then (h◦fi)−1(U) = f−1 ◦h−1(U) is
open in Yi for each i ∈ I. Thus, h−1(U) ∈

⋂
i∈I σi. Thus, by the definition of the final topology,

h−1(U) is open in the final topology. Hence h is continuous.
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