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Lecture Notes from September 13, 2016

taken by Sabrine Assi

Last Time

• Ordering

• Net and Convergence

We have seen from the previous lecture that a function f is continuous at a point a if and
only iff a convergent net (xi)i∈I converges to a, f(xi) converges to f(a). In this lecture note,
we introduce a concept of filterbase. Then, we will see that convergence of nets is related with
convergence of filterbases. Also, a continuity of a function can be characterized by convergence
of filterbases.

Filterbases

1.4.32 Definition. Let X be a set. A set B ⊂ P (X) \ {∅} is called a filterbase if (B,⊇) is a
directed set. A filterbase is called a filter if A ⊂ B and A ∈ B implies B ∈ B. If B is a filterbase
then B̂ = {B ⊂ X : ∃A ∈ B, A ⊂ B} is the filter generated by B.

1.4.33 Remark. Being a directed set means that two elements in a filterbase always intersect. In
the other words, if B is a filterbase and A,B ∈ B, A ∩B 6= ∅.
1.4.34 Examples. (a) If (X, τ) is a topological space then the set of all neighborhoods of x:

U(x) = {B ⊂ X : x ∈ U ⊂ B for some open set U containing x}

with “ ⊇ ” is a filter called the neighborhood filter of X.

(b) If (xi)i∈I is a net then B = {Bi : i ∈ I} with Bi= {xj : j ≥ i} is called the filterbase
associated with the net (xi)i∈I .

(c) B = {(0, 1

n
) : n ∈ N} is a filterbase in R.

Characterization of Topologies by Convergence of Filterbases or Nets

1.4.35 Definition. let (X, τ) be a topological space and x ∈ X. We say that a filterbase B
converges to x (denote B → x), if for each U ∈ U(x) there is B ∈ B such that B ⊂ U . This
condition is equivalent to U(x) ⊂ B̂.
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1.4.36 Example. A filterbase B = {(0, 1

n
) : n ∈ N} converges to 0. Note that each element in

this filterbase does not contain 0 but B converge to 0.

Proof. Let U ∈ U(0). There exists (−ε, ε) ⊆ U , for some ε > 0. By archimedian property ,
there is n ∈ N such that 1/n < ε. So, (0, 1/n) ⊆ (−ε, ε) ⊆ U . Thus the filterbase B converges
to 0.

To formulate a characterization of convergence ,we use the axiom of choice.
Axiom: If (Xi)i∈I is a family of non empty sets then there is map x : I →

⋃
i∈IXi with x(i) ∈ Xi

for every i ∈ I.

1.4.37 Lemma. A filterbase B on a topological space X converges to y ∈ X if and only if each
net with I = B and xB ∈ B for each B ∈ B converges to y.

Proof. If B converges to y, then by definition: for each U ∈ U(y) there is B ∈ B with B ⊂ U
but then if (xB)B∈B for each B ∈ B we have for each B′ ⊂ B, xB′ ∈ B′ ⊂ B ⊂ U . Thus,
(xB)B∈B converges to y.
Conversely, assume B does not converge to y . Then ,there exist U ∈ U(x) such that for no
B ∈ B,B ∩ U c = ∅ this means for any B ∈ B , there is xB ∈ B with xB /∈ U , thus (xB)B∈B
does not converge to y.

1.4.38 Remark. If I is countable , i.e. I ⊂ N then the elements of
∏

i∈I Xi can be constructed
by induction.With the added axiom , we can admit uncountable I

1.4.39 Theorem. Let (X, τ) be a topological space, Y ⊂ X and a ∈ X . Then TFAE

(a) a ∈ Ȳ .

(b) there is a net (xi)i∈I in Y with limi∈I xi = a.

(c) there is a filterbase B in Y converging to a.

Proof. We first show (a)⇔ (b). Assume a ∈ Ȳ , then for each U ∈ U(a) , there is xu ∈ U∩Y 6= ∅
and a ∈ U . Hence xu → a. Conversely, assume a /∈ Ȳ then a ∈ X \ Ȳ = V . Then by openness
of V , there is U ∈ U(a) with U ∩ Y = ∅
If I indexes a net xi → a then we know there is i0 such that for all i ≥ i0, we have xi ∈ U , so
xi /∈ Y. Hence , there is no such net in Y converging to a .
Next , we show (b)⇔ (c)
let (xi)i∈I be a net in Y with xi → a.Then , B = {Bi : i ∈ I} with Bi = {xj : i ≤ j} gives a
filterbase with B→ a.Finally , if B is a filterbase in Y with B→ a then if I = B, and we choose
xB ∈ B for each B ∈ B .Then xB → a.

Characterization of Continuity with Nets or Filterbases We can use nets and filterbases to
characterize continuity

1.4.40 Theorem. let f : X → Y with topological spaces X, Y and a ∈ X. Then TFAE

(1) f is continuous at a.
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(2) For each net f(xi)→ f(a).

(3) For each filterbase B in X with B→ a , we have that f(B) = {f(B) : B ∈ B} converges
to f(a).

Proof. We show (1) ⇔ (2). Assuming f is continuous at a and given V ∈ U(f(a)) ,applying
f to both side Then U = f−1(V ) is in U(a), so if xi → a, there is i0 such that for all j ≥ i0,
xj ∈ U and hence f(xj) ∈ f(U) = V .This means the image net converges to f(a). Next,assume
f is not continuous at a, then there is V ∈ U(f(a)) and for each U ∈ U(a), there is xu with
xu ∈ U but (f(xu)) /∈ V . Thus, we get xu → a but (f(xu))u∈U(a) does not converge to f(a).
Next, we show (2)⇔ (3). For any filterbase B, we can define a net (xB) such that xB ∈ B for
each B ∈ B. If B→ a, then xB → a. On the other hand, if (xi) for i ∈ I is a net with a direted
set I. Define Bi = {xj : j ≥ i}. Then, B = {Bi : i ∈ I} will be a filterbase. If xi → a, then
B→ a. By using these relations, it follows that (2)⇔ (3).

1.4.41 Remarks. (1) If τ and σ are topologies on X, then τ is finer than σ if and only if
Id : (X, τ) → (X, σ), x 7→ x is continuous and σ = τ is equivalence to Id being a homeomor-
phism.

(2) The characterization of continuity gives us that τ is finer than σ if all nets /filterbases
that converge with respect to τ also converge with respect to σ. Thus, the notion of convergence
of nets/filterbases characterizes topologies.

Proof. (1) We know that Id(A) = A for any A ⊂ X and Id−1(B) = B for any B ⊂ X. Let U
is open set in (X, σ). Since Id is continuous, Id−1(U) = U is also open in (X, τ). Thus, U ∈ τ.
Therefore, σ ⊂ τ i.e., τ is finer that σ. Conversely, if τ is finer than σ, Id−1(U) ∈ τ for any
U ∈ σ. Thus, Id is continuous. Therefore, If σ = τ , both Id and Id−1 are continuous. Thus,
Id is homeomorphism.

(2) If (X, τ) and (X, σ) are homeomorphism, the identity map Id : X → Y is a homeomor-
phism. Thus, by the previous theorem, any net (xi) or any filterbase B converging to a, then
Id(xi) or Id(B) converge to Id(a). Also, this is true for Id−1. Conversely, if for any net (xi)
or any filterbase B converging to a, Id(xi) or Id(B) converge to Id(a) and also if this is true
for Id−1, by the previous theorem, Id and Id−1 is continuous. Thus, Id is homeomorphism i.e.,
σ = τ. This shows convergence of filterbases and nets characterizes topologies on X.

1.4.42 Corollary. Let X be a set with th initial topology induced by fi : X → Yi. Then

(a) A filterbase B in X converges to a ∈ X if and only if fi(B) converges to fi(a) for each
i ∈ X.

(b) A net (xj)j∈J in X converges to a ∈ X iff each image net fi(xj) converges to fi(a) for all
i ∈ I.

Proof. By previous lectures, we know that, for every i, fi : X → Yi is continuous with respect
to the initial topology induced by fi : X → Yi. Thus, by the above theorem, a filterbase B
converges to a if and only if f(B) converges to fi(a). Also, by the above theorem, we also have
that a net (xi) converges to a if and only if f(xi) converges to fi(a).
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we studied nets but an interesting question rises why we really need nets and for which spaces,
continuous sequences are enough to characterize the topology. So we will introduce the new topic,
countability.

Countability

1.4.43 Definition. Let (X, τ) be a topological space.Then

(a) If x ∈ X we call B ⊂ U(x) is a neighborhood (or local) basis if for each U ∈ U(x), there
is B ∈ B with B ⊂ U .

(b) We say that X is first countable if for each x ∈ X there is a countable neighborhood basis.

(c) We say X is a second countable set if τ is generated by a countable set(in that case τ has
a countable basis).

(d) X is separable if it has a countable dense set

1.4.44 Examples. (a) (Kn, ‖.‖) is separable.

(b) lp, 1 ≤ p <∞ is separable.

(c) l∞ is not separable .

(d) c0 is separable.

Proof. (a) For K = R, Qn is a countable set and it is dense in Rn. If K = C, an countable
dense set in K will be (Q× iQ)n.

(b) To prove lp, 1 ≤ p <∞, is separable, we show that it contains a countable dense subset.
Let

An = {(b0, b1, ..., bn, 0, ....) : bi ∈ Q for i = 0, ..., n} and,

A =
∞⋃
n=0

An.

Because a sequence of the form (b0, b1, ..., bn, 0, ....) has only finitely many terms of non-zeros,∑∞
i=0 |bi|p =

∑n
i=0 |bi|p < ∞. Thus, these sequences are in lp. Since Q is countable and finite

product of countable sets is countable and then the union of countable sets is countable ,so A is
countable. Now we want to prove A is dense in lp. Given any x = (xn) ∈ lp, and for ε > 0 there
is y ∈ A such that d(x, y) < ε. Then we have

∞∑
n=0

|xn|p <∞

Thus, given ε > 0, there exists m ∈ N such that

∞∑
n=m+1

|xn|p < ε.
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Now for 0 ≤ i ≤ m, choose bi ∈ Q such that |bi − xi| < ε/m. Then the element y =
(b0, b1, ..., bm, 0, 0, ...) ∈ A.

(c) Let x : S = {0, 1}N → (xn)n∈N, xn = (−1)n and Vx = B1/3(X) then if x 6= y then
Vx∩Vy = ∅. If (cm)m∈N is dense in l∞ then for each x there would be m(x) such that m(x) ∈ Vx.
Choosing for each x the smallest m such that x = m(x) would give 1-1 map from S to N, but
this cannot exist by cardinality of S.
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