Functional Analysis, Math 7320 Lecture Notes from September 15, 2016

taken by Nikolaos Mitsakos

1.4.44 Examples (Separable or Non-Separable topological spaces). (d) c_0 is separable.

Proof. We already know that $(\mathbb{K}^n, \|.\|_{\infty})$ is separable. Defining the embedding $S_n = i(\mathbb{K}^n)$, where $i(x) = (x_1, x_2, ..., x_n, 0, 0, ...)$, we see that $\bigcup_{n \in \mathbb{N}} S_n$ is separable. Now, letting $x \in c_0$ and $\epsilon > 0$, by definition of c_0 , we can find n such that for all $m \ge n$ we have $|x_m| < \epsilon$. Defining $\pi_m = (x_1, x_2, ..., x_m, 0, 0, ...)$ we get that $\|\pi_m(x) - x\|_{\infty} < \epsilon$, so $\bigcup_{n \in \mathbb{N}} S_n$ is dense. \Box

1.4.45 Lemma. Let (X, τ) be second countable. Then

- (1) (X, τ) is first countable.
- (2) (X, τ) is separable.

Proof. (1) Since (X, τ) is second countable, by definition, topology τ has a countable basis \mathcal{A} , and each element U in τ is the union of elements from \mathcal{A} . If $x \in U$ for some $U \in \tau$, then there exists $A \in \mathcal{A}$ such that $x \in A$, where $A \subset U$. This is true for any U containing x, so x has a countable neighborhood basis.

(2) Furthermore, given a countable basis \mathcal{A} , for any $A \in \mathcal{A}$ we can pick some $x_A \in A$. Then $\{x_A\}_{A \in \mathcal{A}}$ is dense, because for any U, non-empty and open, there exists some $A \subset U$, thus $x_A \in A \subset U$. By the countability of \mathcal{A} , we have that $(x_A)_{A \in \mathcal{A}}$ is also countable. Thus (X, τ) is separable.

1.4.46 Theorem. Let (X, τ) be a first countable topological space. Then

- (1) for $Y \subset X$, $a \in \overline{Y}$ if and only if there exists $(x_n)_{n \in \mathbb{N}}$ in Y with $x_n \longrightarrow a$.
- (2) a map $f: X \longrightarrow Y$ is continuous if and only if for all $x_n \longrightarrow a$, $f(x_n) \longrightarrow f(a)$.

Proof. (1) Given any $a \in \overline{Y}$, by first countability there exists sequence $(U_n)_{n \in \mathbb{N}}$ of open sets (obtained from countable neighborhood system) such that for any open set V with $a \in V$ there exists n_0 such that for all $n \ge n_0$, $U_n \subset V$. Now, since $a \in \overline{Y}$, for each n we have $U_n \cap Y \neq \emptyset$. Thus, we can choose $x_n \in U_n \cap Y$ and then $x_n \longrightarrow a$.

The converse implication holds in general, for any (X, τ) topological space. Since any $(x_n)_{n \in \mathbb{N}}$ is a net, then the existence of some $(x_n)_{n \in \mathbb{N}}$ in Y such that $\lim_{n \in \mathbb{N}} x_n = a$ implies, by previous Theorem, that $a \in \overline{Y}$.

(2) Now, let $f: X \longrightarrow Y$ be a continuous map. Then, for each $x_n \longrightarrow a$, $(x_n)_{n \in \mathbb{N}}$ is a convergent net, so, by continuity, $f(x_n) \longrightarrow f(a)$. Conversely, assume that for any $x_n \longrightarrow a$ we have $f(x_n) \longrightarrow f(a)$ but f is not continuous. This means that there exists some filter base such that $\mathbb{B} \longrightarrow a$. But there exists open V such that $f(a) \in V$ and there exists i_0 such that for each $i \geq i_0, f(B_i) \cap V = \emptyset$. Then, picking $x_i \in B_i$ gives that $f(x_i)$ does not converge to f(a).

1.4.47 Theorem. A semi-metric space (X, d) is first countable and is second countable if and only if is separable.

Proof. Given $x \in X$, $(B_{1/n}(x))_{n \in \mathbb{N}}$ is a countable neighborhood basis. Now, assuming that X is separable, let $(x_n)_{n \in \mathbb{N}}$ be a (countable) dense sequence. Then for any open open set $U \subset X$, we can write

$$U = \bigcup \{ B_{1/n}(x_m) : (x_m \in U), B_{1/n}(x_m) \subset U \}$$

This union is indeed all of U, because for any y in U, exists $\epsilon > 0$ such that $B_{\epsilon}(y) \subset U$ and then, by density of $(x_n)_{n\in\mathbb{N}}$, there exists n so that $\frac{1}{n} < \frac{\epsilon}{3}$ and $x_m \in B_{1/n}(y)$, so $y \in B_{2/n}(x_m) \subset B_{\epsilon}(y)$. Thus, each open set $U \subset X$ is the union of a subset from $\mathcal{A} = \{B_{1/n}(x_m)\}_{n,m\in\mathbb{N}}$, which makes \mathcal{A} a countable basis for τ . The converse is true by previous Lemma: each second countable (X, τ) is separable.

- 1.4.48 Exercise. (1) If X is first-countable topological space and $A \subset X$, then A, equipped with the trace topology, is also first-countable.
- (2) A countable product of first-countable spaces $(X_n)_{n \in \mathbb{N}}$ is also first-countable.

Proof. (1) Let $A \subset X$, $x \in A$ and $\mathcal{B} = \{B_1, B_2, ...\}$ a countable neighborhood basis of X at x. Then

$$\mathcal{B}_A = \{B_1 \cap A, B_2 \cap A, \dots\}$$

is a countable neighborhood basis of A at x.

(2) Suppose that $x \in \prod X_n$, where each X_n is first-countable space. Let \mathcal{B}_n be a basis for X_n at x(n), the *n*-th coordinate of x. Let $J \subset \mathbb{N}$ finite and denote

$$\mathcal{B}_J = \{\prod_{n \in \mathbb{N}} B_n : B_n = X_n \text{ if } n \notin J, \ B_n \in \mathcal{B}_n \text{ if } n \in J\}$$

(e.g. $\mathcal{B}_{J=\{1,2\}} = \{B_1 \times B_2 \times X_3 \times X_4 \times ... : B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2\}$). Then \mathcal{B}_J is countable, since it is in bijection with the set $\prod_{i} B_n$, a finite product of countable sets. Furthermore, the collection $\mathcal{B} = \bigcup_{\substack{J \subset \mathbb{N} \\ Jfinite}} \mathcal{B}_J \text{ is countable, because there are countably many finite subsets of } \mathbb{N}.$

<u>Claim</u>: \mathcal{B} is a neighborhood basis for $\prod_{n \in \mathbb{N}} X_n$ at x. <u>Indeed</u>: Take a basis element containing x, say $V = \prod_{n \in \mathbb{N}} V_n$, such that for the finite set $J \subset \mathbb{N}$ we have: $V_n = X_n$ if $n \notin J$ and V_n open in X_n for all n. Then, $x(n) \in V_n$, so for each $n \in J$ we can choose $B_n \in \mathcal{B}_n$ so that $x(n) \in B_n \subset V_n$. Setting $B_n = X_n$ for $n \notin J$ we get $x \in \prod B_n \in \mathcal{B}.$ \square $n \in \mathbb{N}$

1.4.49 Remark. The statements in the last exercise hold for the more general case of secondcountable spaces as well. A Proof can be found in *Munkres' Topology 2nd ed. (Theorem 30.2)*.

1.5 Uniqueness of limits

1.5.50 Theorem. Let (X, τ) be a topological space. The Following are Equivalent:

- (1) X is Hausdorff space.
- (2) Every convergent net $(x_i)_{i \in I}$ has a unique limit.
- (3) Every convergent filterbase has a unique limit.

Proof. (2) \Leftrightarrow (3) The equivalence of nets and filterbases with respect to convergence in any topological space (X, τ) suffices to guarantee this result. Indeed, assume that every convergent filterbase has unique limit and let $(x_i)_{i\in I}$ be a net in X such that $x_i \longrightarrow a$ and $x_i \longrightarrow b$, for $a \neq b$. Then $\mathbb{B} = \{B_i : i \in I\}$ where $B_i = \{x_k : i \leq k\}$ defines a filterbase with $\mathbb{B} \longrightarrow a$ and $\mathbb{B} \longrightarrow b$, which contradicts the uniqueness of the filterbases' limit. Conversely, in a topological space where each convergent net is assumed to have unique limit, if $\mathbb{B} \longrightarrow a$ and $\mathbb{B} \longrightarrow b$ was true for some filterbase \mathbb{B} and some $a \neq b$, by choosing $x_B \in B$ for each $B \in \mathbb{B}$ we construct a net $(x_B)_{B\in\mathbb{B}}$ with $x_B \longrightarrow a$ and $x_B \longrightarrow b$, contradicting the uniqueness of the nets' limit.

(1) \Leftrightarrow (2) Assume that X is Hausdorff and $(x_i)_{i \in I} \longrightarrow a$ as well as $(x_i)_{i \in I} \longrightarrow b$. If $a \neq b$, by the Hausdorff property, we are guaranteed the existence of open sets V_1, V_2 such that $a \in V_1$ and $b \in V_2$ while $V_1 \cap V_2 = \emptyset$. By convergence of the net, there exists some i_1 such that for all $i \geq i_1$, $x_i \in V_1$. Similarity, there exists some i_2 such that for all $i \geq i_2$, $x_i \in V_2$. But then, if we choose some $i \geq max\{i_1, i_2\}$ we see that $x_i \in V_1 \cap V_2$ which contradicts disjointness! Hence, a = b.

Conversely, assume X is not Hausdorff. Then we can find $a, b \in X$, with $a \neq b$, such that for any open sets V_1, V_2 with $a \in V_1, b \in V_2$, $V_1 \cap V_2 \neq \emptyset$ holds. Let

$$I = \{(V_1, V_2) : V_1, V_2 \text{ open}, V_1 \in U(a), V_2 \in U(b)\}$$

and let

 $(V_1, V_2) \leq (U_1, U_2)$ if $U_1 \subset V_1$ and $U_2 \subset V_2$.

Then, I is partially ordered, directed, while choosing from each (V_1, V_2) a point $x_{(V_1, V_2)} \in V_1 \cap V_2$ gives that $(x_i)_{i \in I}$ converges both to a and to b.

1.6 Compactness

1.6.51 Definition. A topological space (X, τ) is called:

- (a) quasi-compact, if each open cover of X has a finite subcover, i.e. if {U_j}_{j∈J} is a family of open sets in X such that X ⊂ ⋃_{j∈J} U_j there exists some finite F ⊂ J such that X ⊂ ⋃_{j∈F} U_j
- (b) *compact*, if it is quasi-compact and Hausdorff.

- **1.6.52 Lemma.** (a) If (X, τ) is a topological space and $Y \subset X$ then Y is quasi-compact with respect to the trace topology if and only if each open cover of Y in X has a finite subcover.
 - (b) If X is Hausdorff and $Y \subset X$ is compact, then Y is closed. If X is compact and $Y = \overline{Y} \subset X$ then Y is compact.
 - (c) If X is normed and $Y \subset X$ is compact, then Y is bounded.

Proof. (a) Assume a quasi-compact $Y \subset X$, equipped with the trace topology, and an open cover $(U_j)_{j\in J}$ of Y, composed by open sets U_j in X. Then, $(U_j \cap Y)_{j\in J}$ is also a cover of Y, composed by sets that are open in τ_y . Since Y is quasi-compact with respect to the trace topology, there exists a finite subcover $(U_j \cap Y)_{j\in F}$, where $|F| < \infty$. Then, $(U_j)_{j\in F}$ is a finite open cover of Y in X.

The converse is similar. Specifically, assume $(U_i)_{i \in J}$ being an open cover of Y composed by sets $U_i \in \tau_Y$. This means that each U_i can be written as $U_i = V_i \cap Y$, where V_i are open in X. Then we get

$$Y \subset \bigcup_{i \in J} (V_i \cap Y) \subset \bigcup_{i \in J} V_i$$

which implies that $(V_i)_{i \in J}$ is an open cover of Y by sets V_i open in X. By assumption, there exists a finite subcover $(V_i)_{i \in F}$ (F finite) of Y, but then $(V_i \cap Y)_{i \in F}$ is a finite cover of Y composed by sets in $(U_i)_{i \in J}$ (subcover).