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1.4.44 Examples (Separable or Non-Separable topological spaces). (d) c0 is separable.

Proof. We already know that (Kn, ‖.‖∞) is separable. Defining the embedding Sn = i(Kn),
where i(x) = (x1, x2, ..., xn, 0, 0, ...), we see that

⋃
n∈N

Sn is separable. Now, letting x ∈ c0 and

ε > 0, by definition of c0, we can find n such that for all m ≥ n we have |xm| < ε. Defining
πm = (x1, x2, ..., xm, 0, 0, ...) we get that ‖πm(x)− x‖∞ < ε, so

⋃
n∈N

Sn is dense.

1.4.45 Lemma. Let (X, τ) be second countable. Then

(1) (X, τ) is first countable.

(2) (X, τ) is separable.

Proof. (1) Since (X, τ) is second countable, by definition, topology τ has a countable basis A,
and each element U in τ is the union of elements from A. If x ∈ U for some U ∈ τ , then there
exists A ∈ A such that x ∈ A, where A ⊂ U . This is true for any U containing x, so x has a
countable neighborhood basis.
(2) Furthermore, given a countable basis A, for any A ∈ A we can pick some xA ∈ A. Then
{xA}A∈A is dense, because for any U , non-empty and open, there exists some A ⊂ U , thus
xA ∈ A ⊂ U . By the countability of A, we have that (xA)A∈A is also countable. Thus (X, τ) is
separable.

1.4.46 Theorem. Let (X, τ) be a first countable topological space. Then

(1) for Y ⊂ X, a ∈ Y if and only if there exists (xn)n∈N in Y with xn −→ a.

(2) a map f : X −→ Y is continuous if and only if for all xn −→ a, f(xn) −→ f(a).

Proof. (1) Given any a ∈ Y , by first countability there exists sequence (Un)n∈N of open sets
(obtained from countable neighborhood system) such that for any open set V with a ∈ V there
exists n0 such that for all n ≥ n0, Un ⊂ V . Now, since a ∈ Y , for each n we have Un ∩ Y 6= ∅.
Thus, we can choose xn ∈ Un ∩ Y and then xn −→ a.
The converse implication holds in general, for any (X, τ) topological space. Since any (xn)n∈N
is a net, then the existence of some (xn)n∈N in Y such that lim

n∈N
xn = a implies, by previous

Theorem, that a ∈ Y .
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(2) Now, let f : X −→ Y be a continuous map. Then, for each xn −→ a, (xn)n∈N is a
convergent net, so, by continuity, f(xn) −→ f(a). Conversely, assume that for any xn −→ a we
have f(xn) −→ f(a) but f is not continuous. This means that there exists some filter base such
that B −→ a. But there exists open V such that f(a) ∈ V and there exists i0 such that for each
i ≥ i0, f(Bi) ∩ V = ∅. Then, picking xi ∈ Bi gives that f(xi) does not converge to f(a).

1.4.47 Theorem. A semi-metric space (X, d) is first countable and is second countable if and
only if is separable.

Proof. Given x ∈ X, (B1/n(x))n∈N) is a countable neighborhood basis. Now, assuming that X
is separable, let (xn)n∈N be a (countable) dense sequence. Then for any open open set U ⊂ X,
we can write

U = ∪{B1/n(xm) : (xm ∈ U), B1/n(xm) ⊂ U}

This union is indeed all of U , because for any y in U , exists ε > 0 such that Bε(y) ⊂ U and then,

by density of (xn)n∈N, there exists n so that
1

n
<
ε

3
and xm ∈ B1/n(y), so y ∈ B2/n(xm) ⊂ Bε(y).

Thus, each open set U ⊂ X is the union of a subset from A = {B1/n(xm)}n,m∈N, which makes
A a countable basis for τ . The converse is true by previous Lemma: each second countable
(X, τ) is separable.

1.4.48 Exercise. (1) If X is first-countable topological space and A ⊂ X, then A, equipped
with the trace topology, is also first-countable.

(2) A countable product of first-countable spaces (Xn)n∈N is also first-countable.

Proof. (1) Let A ⊂ X, x ∈ A and B = {B1, B2, ...} a countable neighborhood basis of X at x.
Then

BA = {B1 ∩ A,B2 ∩ A, ...}

is a countable neighborhood basis of A at x.
(2) Suppose that x ∈

∏
n∈N

Xn, where each Xn is first-countable space. Let Bn be a basis for Xn

at x(n), the n-th coordinate of x. Let J ⊂ N finite and denote

BJ = {
∏
n∈N

Bn : Bn = Xn if n 6∈ J, Bn ∈ Bn if n ∈ J}

(e.g. BJ={1,2} = {B1×B2×X3×X4× ... : B1 ∈ B1, B2 ∈ B2}). Then BJ is countable, since it
is in bijection with the set

∏
n∈J
Bn, a finite product of countable sets. Furthermore, the collection

B =
⋃
J⊂N

Jfinite

BJ is countable, because there are countably many finite subsets of N.

Claim: B is a neighborhood basis for
∏
n∈N

Xn at x.

Indeed: Take a basis element containing x, say V =
∏
n∈N

Vn, such that for the finite set J ⊂ N

we have: Vn = Xn if n 6∈ J and Vn open in Xn for all n. Then, x(n) ∈ Vn, so for each
n ∈ J we can choose Bn ∈ Bn so that x(n) ∈ Bn ⊂ Vn. Setting Bn = Xn for n 6∈ J we get
x ∈

∏
n∈N

Bn ∈ B.
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1.4.49 Remark. The statements in the last exercise hold for the more general case of second-
countable spaces as well. A Proof can be found in Munkres’ Topology 2nd ed. (Theorem 30.2).

1.5 Uniqueness of limits

1.5.50 Theorem. Let (X, τ) be a topological space. The Following are Equivalent:

(1) X is Hausdorff space.

(2) Every convergent net (xi)i∈I has a unique limit.

(3) Every convergent filterbase has a unique limit.

Proof. (2) ⇔ (3) The equivalence of nets and filterbases with respect to convergence in any
topological space (X, τ) suffices to guarantee this result. Indeed, assume that every convergent
filterbase has unique limit and let (xi)i∈I be a net in X such that xi −→ a and xi −→ b, for
a 6= b. Then B = {Bi : i ∈ I} where Bi = {xk : i ≤ k} defines a filterbase with B −→ a and
B −→ b, which contradicts the uniqueness of the filterbases’ limit. Conversely, in a topological
space where each convergent net is assumed to have unique limit, if B −→ a and B −→ b was
true for some filterbase B and some a 6= b, by choosing xB ∈ B for each B ∈ B we construct a
net (xB)B∈B with xB −→ a and xB −→ b, contradicting the uniqueness of the nets’ limit.
(1) ⇔ (2) Assume that X is Hausdorff and (xi)i∈I −→ a as well as (xi)i∈I −→ b. If a 6= b,
by the Hausdorff property, we are guaranteed the existence of open sets V1, V2 such that a ∈ V1
and b ∈ V2 while V1 ∩ V2 = ∅. By convergence of the net, there exists some i1 such that for all
i ≥ i1, xi ∈ V1. Similariry, there exists some i2 such that for all i ≥ i2, xi ∈ V2. But then, if we
choose some i ≥ max{i1, i2} we see that xi ∈ V1 ∩ V2 which contradicts disjointness! Hence,
a = b.
Conversely, assume X is not Hausdorff. Then we can find a, b ∈ X, with a 6= b, such that for
any open sets V1, V2 with a ∈ V1, b ∈ V2, V1 ∩ V2 6= ∅ holds. Let

I = {(V1, V2) : V1, V2 open, V1 ∈ U(a), V2 ∈ U(b)}

and let

(V1, V2) ≤ (U1, U2) if U1 ⊂ V1 and U2 ⊂ V2.

Then, I is partially ordered, directed, while choosing from each (V1, V2) a point x(V1,V2) ∈ V1∩V2
gives that (xi)i∈I converges both to a and to b.

1.6 Compactness

1.6.51 Definition. A topological space (X, τ) is called:

(a) quasi-compact, if each open cover of X has a finite subcover, i.e. if {Uj}j∈J is a family of
open sets in X such that X ⊂

⋃
j∈J

Uj there exists some finite F ⊂ J such that X ⊂
⋃
j∈F

Uj

(b) compact, if it is quasi-compact and Hausdorff.
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1.6.52 Lemma. (a) If (X, τ) is a topological space and Y ⊂ X then Y is quasi-compact with
respect to the trace topology if and only if each open cover of Y in X has a finite subcover.

(b) If X is Hausdorff and Y ⊂ X is compact, then Y is closed. If X is compact and Y = Y ⊂
X then Y is compact.

(c) If X is normed and Y ⊂ X is compact, then Y is bounded.

Proof. (a) Assume a quasi-compact Y ⊂ X, equipped with the trace topology, and an open
cover (Uj)j∈J of Y , composed by open sets Uj in X. Then, (Uj ∩ Y )j∈J is also a cover of
Y , composed by sets that are open in τy. Since Y is quasi-compact with respect to the trace
topology, there exists a finite subcover (Uj ∩ Y )j∈F , where |F | < ∞. Then, (Uj)j∈F is a finite
open cover of Y in X.
The converse is similar. Specifically, assume (Ui)i∈J being an open cover of Y composed by sets
Ui ∈ τY . This means that each Ui can be written as Ui = Vi∩Y , where Vi are open in X. Then
we get

Y ⊂
⋃
i∈J

(Vi ∩ Y ) ⊂
⋃
i∈J

Vi

which implies that (Vi)i∈J is an open cover of Y by sets Vi open in X. By assumption, there exists
a finite subcover (Vi)i∈F (F finite) of Y , but then (Vi ∩ Y )i∈F is a finite cover of Y composed
by sets in (Ui)i∈J (subcover).
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