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1.6.52 Lemma. Let (X, τ) be a topological space and let Y ⊂ X.

(a) Y is quasi-compact with respect to the trace topology if and only if each open cover of Y
in X has a finite subcover.

(b1) If X is Hausdorff and Y is compact, then Y is closed.

(b2) If X is compact and Y is closed, then Y is compact.

(c) If X is normed and Y is compact, then Y is bounded.

Proof. (a) Proven in the previous lecture.

(b1) We will show the complement X \ Y is open in X. To this end, let x ∈ X \ Y . Now for
each y ∈ Y , since X is Hausdorff, there are disjoint open sets Uy and Vy containing x and
y, respectively. We then have Y ⊂

⋃
y∈Y Vy, and since {Vy}y∈Y is an open cover and Y is

compact, there is a finite subcover (Vy)y∈F of Y with |F | <∞ and⋃
y∈F

Vy ∩

(⋂
y∈F

Uy

)
= ∅,

since every Vy is disjoint from Uy. But as a finite intersection of open sets,
⋂
y∈F Uy is

open and contains x. So
⋂
y∈F Uy ⊂ X \ Y , which implies X \ Y is open in X.

(b2) Let X be compact and let Y be closed. Then X \Y is open in X and given an open cover
(Ui)i∈I of Y , composed by open sets in (X, τ), we see that

(⋃
i∈I Ui

)
∪ (X \Y ) is an open

cover of X. Now since X is compact, there is a finite subcover of X which also covers
Y . If X \ Y is an element of this finite subcover, then by removing it, we have found a
finite subcover of Y . We infer from this property that (Y, τY ) has the Heine-Borel/finite
subcover property as well, because every set V ⊂ Y that is open in τY is obtained from
V = Y ∩ U with U open in X. Thus, after “lifting” the open cover with respect to τY
to an open cover in X and passing to a finite subcover, intersecting the sets with Y again
gives the desired finite open subcover in (Y, τY ).

It remains to show the Hausdorff property to establish compactness. Given x, y ∈ Y with
x 6= y, there are open (in X) sets Vx and Vy with x ∈ Vx, y ∈ Vy and Vx ∩ Vy = ∅. Thus,
Vx∩Y and Vy∩Y have the desired separation properties to make (Y, τY ) Hausdorff. Hence
(Y, τY ) is compact.

1



(c) In a normed space, if (Bn(0))n∈N is an open cover of X, then it also covers Y . Thus there
is a finite subcover (Bn(0))n∈F of Y with |F | < ∞, and by choosing N = max{n ∈ F}
we have

Y ⊂ BN(0) ⊂ BN(0),

which means Y is bounded.

2 Topological Vector Spaces

2.1 Fundamental properties

2.1.1 Definition. A vector space X together with a topology τ is called a topological vector
space if

1. for every point x ∈ X, the singleton {x} is a closed set.

2. the vector space operations

+ : X ×X → X, (x, y) 7→ x+ y

and
· : K×X → X, (λ, x) 7→ λx

are continuous with respect to the product topology on X ×X and K×X, respectively.

2.1.2 Theorem. Every normed space is a topological vector space.

Proof. As shown before, ’+’ and ’·’ are continuous operations. Moreover,⋂
n∈N

B 1
n
(x) = {x}

is closed as an intersection of closed sets.

2.1.3 Remark. (a) For a, b ∈ X, let Va ∈ U(a) and Vb ∈ U(b) be open sets. Since each
neighborhood of (a, b) ∈ X ×X contains Va × Vb, continuity of ’+’ means that for each
U ∈ U(a+ b), we can find Va, Vb as above with

Va + Vb = {a′ + b′ : a′ ∈ Va, b′ ∈ Vb} ⊂ U.

(b) Analogously, since λ ∈ K and K is equipped with the topology of open balls, for U ∈ U(λx),
there is an open Vx ∈ U(x) and δ > 0 such that

Bδ(λ)Vx = {λ′x′ : λ′ ∈ Bδ(λ), x
′ ∈ Vx} ⊂ U.

Next, we explore implications of continuity for the topological structure of the space.
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2.1.4 Theorem. Let X be a topological vector space, a ∈ X and λ ∈ K with λ 6= 0. Then both
the translation operator Ta : X → X with Tax = x + a and the scaling operator Mλ : X → X
with Mλx = λx are homeomorphisms of X onto X.

Proof. For a ∈ X and 0 6= λ ∈ K, we note that T−a ◦ Ta = id and that Mλ−1 ◦Mλ = id, so Ta
and Mλ are 1 − 1. Hence, it is sufficient to show that for each a ∈ X and 0 6= λ ∈ K, Ta and
Mλ are continuous. By the continuity of ’+’, given x, a ∈ X, then for U ∈ U(x + a) there are
Va ∈ U(a), Vx ∈ U(x) such that Va + Vx ⊂ U and hence a+ Vx ⊂ U . This means Ta(Vx) ⊂ U ,
and so Ta is continuous at x and since x was arbitrary, Ta is continuous.

Similarly, given U ∈ U(λx), there is Vx and δ > 0 such that Bδ(λ)Vx ⊂ U , which means
λVx ⊂ U , and thus for each λ 6= 0, Mλ is continuous at x. Again, x was arbitrary and so Mλ is
continuous.

According to the previous ideas, each U is open if and only if all of its translates U + a are
open. Consequently, the topology is characterized by U ≡ U(0).

2.1.5 Definition. (a) A filterbase B ⊂ U is called a local base if each U ∈ U contains a
B ∈ B.

(b) A set C is convex if for all a, b ∈ C, we have λa+ (1− λ)b ∈ C for all λ ∈ [0, 1].

(c) A set B ⊂ X is bounded if for each U ∈ U there is s > 0 such that for all t > s, B ⊂ tU .

(d) A metric on X is called invariant if for all x, y, z ∈ X,

d(x+ z, y) = d(x, y).

2.1.6 Definition. A topological vector space is called

(a) locally convex if it has a local base of convex sets.

(b) locally bounded if 0 has a bounded neighborhood.

(c) locally compact if 0 has a compact neighborhood.

(d) metrizable if the topology is induced by a metric.

(e) an F -space if the topology is induced by an invariant metric.

(f) a Fréchet space if X is a locally convex F -space.

(g) normable if the topology on X comes from a norm.

2.1.7 Examples. 1. Let Lp([0, 1]), 0 < p < 1 be the space of measurable functions f : [0, 1]→
R such that

∫ 1

0
|f(x)|pdx < ∞, with functions equal almost everywhere identified. The

function d(f, g) =
∫ 1

0
|f(x)− g(x)|pdx is a metric on Lp([0, 1]). With the inherited metric

topology, Lp([0, 1]), 0 < p < 1 is not a locally convex topological vector space. To see
this, we consider any open ball around 0, i.e.,{

f ∈ Lp([0, 1]) :
∫ 1

0

|f(x)|pdx < R

}
.
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Given ε > 0 and n ≥ 1, we select n disjoint intervals in [0, 1] (not necessarily covering
[0, 1]), say I1, . . . , In, and we set

fk(x) =

(
ε

µ(Ik)

)−p
χIk(x), k = 1, . . . , n,

where µ is considered to be the Lebesgue measure. Then∫ 1

0

|fk(x)|pdx = ε,

and so every fk is at distance ε from 0. However, since the fk’s are supported on disjoint
intervals, their average

gn(x) =
1

n

n∑
k=1

fk(x)

satisfies ∫ 1

0

|gn(x)|pdx =
1

np

n∑
k=1

∫ 1

0

|fk(x)|pdx = n1−pε.

Since 1−p > 0, the distance between gn and 0 can be made arbitrarily large with a suitable
choice of n. In fact, what this means is that the only convex open set in Lp([0, 1]) is the
whole space.

However, Lp[(0, 1)] is locally bounded and an F -space, since and it admits a complete
translation invariant metric with respect to which the vector space operations are continu-
ous.

2. On the other hand, the spaces Lp(µ) for p ≥ 1 have their metric coming from a norm and
so they are locally convex.

We will see later that a topological vector space is normable if and only if it is locally bounded
and locally convex. Also, X is locally compact and normable if and only if dimX <∞.
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