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2.1 Separation Properties (continued)

From previous courses in metric spaces, we know that: Given metric spaces X, Y , a continuous
map f : X → Y . If a subset K ⊂ X is compact, then f(K) is compact. Upon establishing
Hausdorff property of topological vector space, we can get the same result in TVS.

2.1.8 Corollary. Given TVS X, Y , and continuous map f : X → Y , K ⊂ X compact, then
f(K) is compact.

Note: f(K) is compact in the trace topology (f(K), τf(K)) it inherits from Y.

Proof. To get quasi-compactness, we let (Vj)j∈J be an arbitrary open cover of f(K), which
means f(K) ⊂

⋃
j∈J(Vj), and each Vj open in Y. Hence, (Vj ∩ f(K))j∈J forms an open cover

of f(K) in the trace topology τf (K). By continuity of f , each Uj = f−1(Vj) is open, and
K ⊂

⋃
j∈J Uj. Since K is compact by assumption, there exists F ⊂ J such that |F| < ∞ and

K ⊂
⋃
j∈F Uj. The corresponding (Vj∩f(K))j∈F forms a finite open subcover of f(K) in τf(K).

Next, because Y is a TVS, it is Hausdorff (by theorem 2.1.5), so is (f(K), τf(K)), the subspace
topology inherited from topology of Y . We conclude that f(K) is compact.

2.2 Balancedness

2.2.9 Definition. A set K of a K-vector space is called balanced if αK ∈ K for each α ∈ K,
with |α| ≤ 1

To reduce proofs to the special case of such neighborhoods, we need some additional insights
in properties of closure and interior of sets in topological vector spaces.

Notation: U denotes the collection of neighborhood of 0; U◦ denotes the interior of U

2.2.10 Theorem. Let X be a TVS, then we have the following results:

(a) For A ⊂ X, A =
⋂
V ∈U (A+ V ).

(b) For A,B ⊂ X, A+B ⊂ A+B.

(c) If Y ⊂ X, and Y is a subspace, then Y is also a subspace of X.
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(d) If C ∈ X is convex, then C and C◦ are convex.

(e) If K ⊂ X is balanced, then so is K. If, in addition, 0 ∈ K◦, then K◦ is balanced.

(f) If B ⊂ X is bounded, so is B.

Proof. (a) Given x ∈ A. Then, x ∈ A ⇔ every neighborhood of x intersects with A ⇔
(x + V ) ∩ A 6= ∅, for each V ∈ U ⇔ x ∈ A − V . The last equivalence is because there
exists an element z so that z ∈ A, andz = x+y, where y ∈ V ; hence, x = z−y ∈ A−V .
Now, let U = −V , then U ∈ U because 0 ∈ V . We obtain that x ∈ A if and only if
x ∈ A+ U , for each U ∈ U . Hence, x ∈

⋃
U∈U(A+ U). This establishes part (a).

(b) Given a ∈ A, b ∈ B. Let W ∈ U(a+ b).
Then, by continuity of addition, there exists a neighborhood W1 ∈ U(a), and W2 ∈ U(b)
such that W1 +W2 ⊂ W . Apply part (a) for a ∈ A and b ∈ B, there exist x ∈ A ∩W1

and y ∈ B ∩W2. Therefore, for each W ∈ U(a + b), x + y ∈ (A + B) ∩ (W1 +W2).
Hence, x+ y ∈ (A+B) ∩W . We conclude that a+ b ∈ A+B.

(c) Given α 6= 0.
We recall that the map Mα : X → X, x 7→ αx, is a homeomorphism, so αY = αY . In
case α = 0, then this identity is also true.
By part (b), for α, β ∈ K, αY + βY = αY + βY ⊂ αY + βY ⊂ Y . The last relation is
because Y is a subspace of X.

(d) For convexity of the closure, we can apply part (c) with α = t, and β = 1− t. In particular,
for any t ∈ (0, 1), tC + (1 − t)C = tC + (1− t)C ⊂ tC + (1− t)C ⊂ C. Hence, C is
convex by definition of convexity.
For interior C◦, if given t ∈ (0, 1), we have tC◦ + (1 − t)C◦ ⊂ C (because C is convex,
and C◦ ⊂ C). However, C◦ is open, so tC◦ + (1 − t)C◦ is an open set. This is because
tC◦ + (1− t)C◦ =

⋃
x∈C◦ (tx+ (1− t)C◦). The latter is an open set.

Since C◦ is the largest open set contained in C by definition, we conclude that tC◦+ (1−
t)C◦ ⊂ C◦.

(e) Given 0 < |α| ≤ 1, and K ⊂ X be balanced, αK◦ = (αK)◦ because Mα is a home-
omorphism. Since K is balanced, αK◦ ⊂ αK ⊂ K. Moreover, αK◦ open implies that
αK◦ ⊂ K◦.
Assume also that K◦ contains the origin, then 0K◦ = {0} ⊂ K◦. Therefore, αK◦ ⊂ K◦

even for α = 0.
As for the closure, we still have αK = αK because multiplication map Mα is homeomor-
phism. Moreover, since K is balanced, given 0 ≤ |α| ≤ 1 , αK ⊂ K. Therefore, αK ⊂ K.
Hence, αK ⊂ K, which implies K is balanced.

(f) Let B be bounded in X. Given V ∈ U , we have W ⊂ V for some W ∈ U (by Cor. 2.1.7).
Since B is bounded, there is t0 > 0 such that for all t > t0, B ⊂ tW . Hence, B ⊂ tW ⊂
tV . We conclude that B is bounded.
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2.2.11 Remark. Closure A is defined to be the smallest closed sets that contains A. Part (a)
provides another characterization of closure A, which is the intersection of A+ V , where V runs
through the collection of neighborhood of 0. Note that, whereas A is closed, each A+ V is not
necessarily closed

We now formulate an important consequence for the structure of topological vector spaces.

2.2.12 Theorem. In topological vector spaces:

(a) Each U ∈ U contains a balanced neighborhood of 0

(b) Each convex U ∈ U contains a balanced convex neighborhood of 0

Proof.

(a) Let X be a TVS. If U is a neighborhood of 0 in X, then by continuity of scalar multiplication,
there is δ > 0, and an open set V in X such that Bδ(0)V ⊂ U .
Take W = Bδ(0)V , then W is balanced. Moreover, W =

⋃
06=λ∈Bδ(0)

λV , hence W is open; it

also contains 0 (of X), and W ⊂ V .

(b) Suppose U is a convex neighborhood of 0 in X. Let A =
⋂
|α|=1 (αU).

By part (a), U contains a balanced neighborhood W of 0. For |α| = 1, we have that α−1W =
W =⇒ W ⊂ αU ; hence, W ⊂ A.
Therefore, A◦ is an open neighborhood of 0. A is convex (because U is convex by assumption).
By part (d) of Theorem 2.2.10, we have that A◦ is convex. What’s left to show is A◦ is balanced.
To achieve this, it suffices to show that A is balanced (balancedness of A◦ will follow by part (e)
of Theorem 2.2.10 since αU contains 0).
Let 0 ≤ r ≤ 1, |β| = 1 be given, then

rβA =
⋂
|α|=1

rβ(αU) =
⋂
|α|=1

r(αU)

Since αU is a convex set that contains 0, we have that rαU ⊂ αU . We conclude that rβA ⊂ A.
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