Functional Analysis, Math 7320 Lecture Notes from September 27, 2016

taken by Duong Nguyen

2.1 Separation Properties (continued)

From previous courses in metric spaces, we know that: Given metric spaces X, Y, a continuous map $f : X \to Y$. If a subset $K \subset X$ is compact, then f(K) is compact. Upon establishing Hausdorff property of topological vector space, we can get the same result in TVS.

2.1.8 Corollary. Given TVS X, Y, and continuous map $f : X \to Y$, $K \subset X$ compact, then f(K) is compact.

Note: f(K) is compact in the trace topology $(f(K), \tau_{f(K)})$ it inherits from Y.

Proof. To get quasi-compactness, we let $(V_j)_{j\in J}$ be an arbitrary open cover of f(K), which means $f(K) \subset \bigcup_{j\in J}(V_j)$, and each V_j open in Y. Hence, $(V_j \cap f(K))_{j\in J}$ forms an open cover of f(K) in the trace topology $\tau_f(K)$. By continuity of f, each $U_j = f^{-1}(V_j)$ is open, and $K \subset \bigcup_{j\in J} U_j$. Since K is compact by assumption, there exists $\mathcal{F} \subset J$ such that $|\mathcal{F}| < \infty$ and $K \subset \bigcup_{j\in F} U_j$. The corresponding $(V_j \cap f(K))_{j\in F}$ forms a finite open subcover of f(K) in $\tau_{f(K)}$.

Next, because Y is a TVS, it is Hausdorff (by theorem 2.1.5), so is $(f(K), \tau_{f(K)})$, the subspace topology inherited from topology of Y. We conclude that f(K) is compact.

2.2 Balancedness

2.2.9 Definition. A set K of a \mathbb{K} -vector space is called <u>balanced</u> if $\alpha K \in K$ for each $\alpha \in K$, with $|\alpha| \leq 1$

To reduce proofs to the special case of such neighborhoods, we need some additional insights in properties of closure and interior of sets in topological vector spaces.

Notation: $\mathcal U$ denotes the collection of neighborhood of 0; U° denotes the interior of U

2.2.10 Theorem. Let X be a TVS, then we have the following results:

(a) For
$$A \subset X$$
, $A = \bigcap_{V \in \mathcal{U}} (A + V)$.

- (b) For $A, B \subset X$, $\overline{A} + \overline{B} \subset \overline{A + B}$.
- (c) If $Y \subset X$, and Y is a subspace, then \overline{Y} is also a subspace of X.

- (d) If $C \in X$ is convex, then \overline{C} and C° are convex.
- (e) If $K \subset X$ is balanced, then so is \overline{K} . If, in addition, $0 \in K^{\circ}$, then K° is balanced.
- (f) If $B \subset X$ is bounded, so is \overline{B} .

 $t)C^{\circ} \subset C^{\circ}.$

- *Proof.* (a) Given $x \in \overline{A}$. Then, $x \in \overline{A} \Leftrightarrow$ every neighborhood of x intersects with $A \Leftrightarrow (x+V) \cap A \neq \emptyset$, for each $V \in \mathcal{U} \Leftrightarrow x \in A V$. The last equivalence is because there exists an element z so that $z \in A$, andz = x + y, where $y \in V$; hence, $x = z y \in A V$. Now, let U = -V, then $U \in \mathcal{U}$ because $0 \in V$. We obtain that $x \in \overline{A}$ if and only if $x \in A + U$, for each $U \in \mathcal{U}$. Hence, $x \in \bigcup_{U \in \mathcal{U}} (A + U)$. This establishes part (a).
 - (b) Given a ∈ A, b ∈ B. Let W ∈ U(a + b). Then, by continuity of addition, there exists a neighborhood W₁ ∈ U(a), and W₂ ∈ U(b) such that W₁ + W₂ ⊂ W. Apply part (a) for a ∈ A and b ∈ B, there exist x ∈ A ∩ W₁ and y ∈ B ∩ W₂. Therefore, for each W ∈ U(a + b), x + y ∈ (A + B) ∩ (W₁ + W₂). Hence, x + y ∈ (A + B) ∩ W. We conclude that a + b ∈ A + B.
 - (c) Given $\alpha \neq 0$. We recall that the map $\mathcal{M}_{\alpha} : X \to X$, $x \mapsto \alpha x$, is a homeomorphism, so $\alpha \overline{Y} = \overline{\alpha Y}$. In case $\alpha = 0$, then this identity is also true. By part (b), for $\alpha, \beta \in \mathbb{K}$, $\alpha \overline{Y} + \beta \overline{Y} = \overline{\alpha Y} + \overline{\beta Y} \subset \overline{\alpha Y + \beta Y} \subset \overline{Y}$. The last relation is because Y is a subspace of X.
 - (d) For convexity of the closure, we can apply part (c) with $\alpha = t$, and $\beta = 1-t$. In particular, for any $t \in (0,1)$, $t\overline{C} + (1-t)\overline{C} = \overline{tC} + \overline{(1-t)C} \subset \overline{tC} + (1-t)\overline{C} \subset \overline{C}$. Hence, \overline{C} is convex by definition of convexity.

For interior C° , if given $t \in (0,1)$, we have $tC^{\circ} + (1-t)C^{\circ} \subset C$ (because C is convex, and $C^{\circ} \subset C$). However, C° is open, so $tC^{\circ} + (1-t)C^{\circ}$ is an open set. This is because $tC^{\circ} + (1-t)C^{\circ} = \bigcup_{x \in C^{\circ}} (tx + (1-t)C^{\circ})$. The latter is an open set. Since C° is the largest open set contained in C by definition, we conclude that $tC^{\circ} + (1-t)C^{\circ} = U^{\circ}$.

- (e) Given 0 < |α| ≤ 1, and K ⊂ X be balanced, αK° = (αK)° because M_α is a home-omorphism. Since K is balanced, αK° ⊂ αK ⊂ K. Moreover, αK° open implies that αK° ⊂ K°.
 Assume also that K° contains the origin, then 0K° = {0} ⊂ K°. Therefore, αK° ⊂ K° even for α = 0.
 As for the closure, we still have αK = αK because multiplication map M_α is homeomorphism. Moreover, since K is balanced, given 0 ≤ |α| ≤ 1, αK ⊂ K. Therefore, αK ⊂ K. Hence, αK ⊂ K, which implies K is balanced.
- (f) Let B be bounded in X. Given $V \in \mathcal{U}$, we have $\overline{W} \subset V$ for some $W \in \mathcal{U}$ (by Cor. 2.1.7). Since B is bounded, there is $t_0 > 0$ such that for all $t > t_0, B \subset tW$. Hence, $\overline{B} \subset t\overline{W} \subset tV$. We conclude that \overline{B} is bounded.

2.2.11 Remark. Closure \overline{A} is defined to be the smallest closed sets that contains A. Part (a) provides another characterization of closure \overline{A} , which is the intersection of A + V, where V runs through the collection of neighborhood of 0. Note that, whereas \overline{A} is closed, each A + V is not necessarily closed

We now formulate an important consequence for the structure of topological vector spaces.

2.2.12 Theorem. In topological vector spaces:

- (a) Each $U \in \mathcal{U}$ contains a balanced neighborhood of 0
- (b) Each convex $U \in \mathcal{U}$ contains a balanced convex neighborhood of 0

Proof.

(a) Let X be a TVS. If U is a neighborhood of 0 in X, then by continuity of scalar multiplication, there is $\delta > 0$, and an open set V in X such that $B_{\delta}(0)V \subset U$.

Take $W = B_{\delta}(0)V$, then W is balanced. Moreover, $W = \bigcup_{0 \neq \lambda \in B_{\delta}(0)} \lambda V$, hence W is open; it also contains 0 (of X), and $W \subset V$.

(b) Suppose U is a convex neighborhood of 0 in X. Let $A = \bigcap_{|\alpha|=1} (\alpha U)$.

By part (a), U contains a balanced neighborhood W of 0. For $|\alpha| = 1$, we have that $\alpha^{-1}W = W \implies W \subset \alpha U$; hence, $W \subset A$.

Therefore, A° is an open neighborhood of 0. A is convex (because U is convex by assumption). By part (d) of Theorem 2.2.10, we have that A° is convex. What's left to show is A° is balanced. To achieve this, it suffices to show that A is balanced (balancedness of A° will follow by part (e) of Theorem 2.2.10 since αU contains 0).

Let $0 \le r \le 1$, $|\beta| = 1$ be given, then

$$r\beta A = \bigcap_{|\alpha|=1} r\beta(\alpha U) = \bigcap_{|\alpha|=1} r(\alpha U)$$

Since αU is a convex set that contains 0, we have that $r\alpha U \subset \alpha U$. We conclude that $r\beta A \subset A$.