Functional Analysis, Math 7320 Lecture Notes from September 27, 2016

taken by Duong Nguyen

2.1 Separation Properties (continued)

From previous courses in metric spaces, we know that: Given metric spaces X, Y, a continuous map $f: X \rightarrow Y$. If a subset $K \subset X$ is compact, then $f(K)$ is compact. Upon establishing Hausdorff property of topological vector space, we can get the same result in TVS.
2.1.8 Corollary. Given TVS X, Y, and continuous map $f: X \rightarrow Y, K \subset X$ compact, then $f(K)$ is compact.

Note: $f(K)$ is compact in the trace topology $\left(f(K), \tau_{f(K)}\right)$ it inherits from Y.
Proof. To get quasi-compactness, we let $\left(V_{j}\right)_{j \in J}$ be an arbitrary open cover of $f(K)$, which means $f(K) \subset \bigcup_{j \in J}\left(V_{j}\right)$, and each V_{j} open in Y. Hence, $\left(V_{j} \cap f(K)\right)_{j \in J}$ forms an open cover of $f(K)$ in the trace topology $\tau_{f}(K)$. By continuity of f, each $U_{j}=f^{-1}\left(V_{j}\right)$ is open, and $K \subset \bigcup_{j \in J} U_{j}$. Since K is compact by assumption, there exists $\mathcal{F} \subset J$ such that $|\mathcal{F}|<\infty$ and $K \subset \bigcup_{j \in F} U_{j}$. The corresponding $\left(V_{j} \cap f(K)\right)_{j \in F}$ forms a finite open subcover of $f(K)$ in $\tau_{f(K)}$.

Next, because Y is a TVS, it is Hausdorff (by theorem 2.1.5), so is $\left(f(K), \tau_{f(K)}\right)$, the subspace topology inherited from topology of Y. We conclude that $f(K)$ is compact.

2.2 Balancedness

2.2.9 Definition. A set K of a \mathbb{K}-vector space is called balanced if $\alpha K \in K$ for each $\alpha \in K$, with $|\alpha| \leq 1$

To reduce proofs to the special case of such neighborhoods, we need some additional insights in properties of closure and interior of sets in topological vector spaces.

Notation: \mathcal{U} denotes the collection of neighborhood of $0 ; U^{\circ}$ denotes the interior of U
2.2.10 Theorem. Let X be a TVS, then we have the following results:
(a) For $A \subset X, \bar{A}=\bigcap_{V \in \mathcal{U}}(A+V)$.
(b) For $A, B \subset X, \bar{A}+\bar{B} \subset \overline{A+B}$.
(c) If $Y \subset X$, and Y is a subspace, then \bar{Y} is also a subspace of X.
(d) If $C \in X$ is convex, then \bar{C} and C° are convex.
(e) If $K \subset X$ is balanced, then so is \bar{K}. If, in addition, $0 \in K^{\circ}$, then K° is balanced.
(f) If $B \subset X$ is bounded, so is \bar{B}.

Proof. (a) Given $x \in \bar{A}$. Then, $x \in \bar{A} \Leftrightarrow$ every neighborhood of x intersects with $\mathrm{A} \Leftrightarrow$ $(x+V) \cap A \neq \emptyset$, for each $V \in \mathcal{U} \Leftrightarrow x \in A-V$. The last equivalence is because there exists an element z so that $z \in A$, and $z=x+y$, where $y \in V$; hence, $x=z-y \in A-V$. Now, let $U=-V$, then $U \in \mathcal{U}$ because $0 \in V$. We obtain that $x \in \bar{A}$ if and only if $x \in A+U$, for each $U \in \mathcal{U}$. Hence, $x \in \bigcup_{U \in \mathcal{U}}(A+U)$. This establishes part (a).
(b) Given $a \in \bar{A}, b \in \bar{B}$. Let $W \in \mathcal{U}(a+b)$.

Then, by continuity of addition, there exists a neighborhood $W_{1} \in \mathcal{U}(a)$, and $W_{2} \in \mathcal{U}(b)$ such that $W_{1}+W_{2} \subset W$. Apply part (a) for $a \in \bar{A}$ and $b \in \bar{B}$, there exist $x \in A \cap W_{1}$ and $y \in B \cap W_{2}$. Therefore, for each $W \in \mathcal{U}(a+b), x+y \in(A+B) \cap\left(W_{1}+W_{2}\right)$. Hence, $x+y \in(A+B) \cap W$. We conclude that $a+b \in \overline{A+B}$.
(c) Given $\alpha \neq 0$.

We recall that the map $\mathcal{M}_{\alpha}: X \rightarrow X, x \mapsto \alpha x$, is a homeomorphism, so $\alpha \bar{Y}=\overline{\alpha Y}$. In case $\alpha=0$, then this identity is also true.
By part (b), for $\alpha, \beta \in \mathbb{K}, \alpha \bar{Y}+\beta \bar{Y}=\overline{\alpha Y}+\overline{\beta Y} \subset \overline{\alpha Y+\beta Y} \subset \bar{Y}$. The last relation is because Y is a subspace of X.
(d) For convexity of the closure, we can apply part (c) with $\alpha=t$, and $\beta=1-t$. In particular, for any $t \in(0,1), t \bar{C}+(1-t) \bar{C}=\overline{t C}+\overline{(1-t) C} \subset \overline{t C+(1-t) C} \subset \bar{C}$. Hence, \bar{C} is convex by definition of convexity.
For interior C°, if given $t \in(0,1)$, we have $t C^{\circ}+(1-t) C^{\circ} \subset C$ (because C is convex, and $\left.C^{\circ} \subset C\right)$. However, C° is open, so $t C^{\circ}+(1-t) C^{\circ}$ is an open set. This is because $t C^{\circ}+(1-t) C^{\circ}=\bigcup_{x \in C^{\circ}}\left(t x+(1-t) C^{\circ}\right)$. The latter is an open set.
Since C° is the largest open set contained in C by definition, we conclude that $t C^{\circ}+(1-$ t) $C^{\circ} \subset C^{\circ}$.
(e) Given $0<|\alpha| \leq 1$, and $K \subset X$ be balanced, $\alpha K^{\circ}=(\alpha K)^{\circ}$ because \mathcal{M}_{α} is a homeomorphism. Since K is balanced, $\alpha K^{\circ} \subset \alpha K \subset K$. Moreover, αK° open implies that $\alpha K^{\circ} \subset K^{\circ}$.
Assume also that K° contains the origin, then $0 K^{\circ}=\{0\} \subset K^{\circ}$. Therefore, $\alpha K^{\circ} \subset K^{\circ}$ even for $\alpha=0$.
As for the closure, we still have $\alpha \bar{K}=\overline{\alpha K}$ because multiplication map \mathcal{M}_{α} is homeomorphism. Moreover, since K is balanced, given $0 \leq|\alpha| \leq 1, \alpha K \subset K$. Therefore, $\overline{\alpha K} \subset \bar{K}$. Hence, $\alpha \bar{K} \subset \bar{K}$, which implies \bar{K} is balanced.
(f) Let B be bounded in X. Given $V \in \mathcal{U}$, we have $\bar{W} \subset V$ for some $W \in \mathcal{U}$ (by Cor. 2.1.7). Since B is bounded, there is $t_{0}>0$ such that for all $t>t_{0}, B \subset t W$. Hence, $\bar{B} \subset t \bar{W} \subset$ $t V$. We conclude that \bar{B} is bounded.
2.2.11 Remark. Closure \bar{A} is defined to be the smallest closed sets that contains A. Part (a) provides another characterization of closure \bar{A}, which is the intersection of $A+V$, where V runs through the collection of neighborhood of 0 . Note that, whereas \bar{A} is closed, each $A+V$ is not necessarily closed

We now formulate an important consequence for the structure of topological vector spaces.
2.2.12 Theorem. In topological vector spaces:
(a) Each $U \in \mathcal{U}$ contains a balanced neighborhood of 0
(b) Each convex $U \in \mathcal{U}$ contains a balanced convex neighborhood of 0

Proof.
(a) Let X be a TVS. If U is a neighborhood of 0 in X , then by continuity of scalar multiplication, there is $\delta>0$, and an open set V in X such that $B_{\delta}(0) V \subset U$.
Take $W=B_{\delta}(0) V$, then W is balanced. Moreover, $W=\bigcup_{0 \neq \lambda \in B_{\delta}(0)} \lambda V$, hence W is open; it also contains 0 (of X), and $W \subset V$.
(b) Suppose U is a convex neighborhood of 0 in X . Let $A=\bigcap_{|\alpha|=1}(\alpha U)$.

By part (a), U contains a balanced neighborhood W of 0 . For $|\alpha|=1$, we have that $\alpha^{-1} W=$ $W \Longrightarrow W \subset \alpha U$; hence, $W \subset A$.
Therefore, A° is an open neighborhood of $0 . A$ is convex (because U is convex by assumption). By part (d) of Theorem 2.2.10, we have that A° is convex. What's left to show is A° is balanced. To achieve this, it suffices to show that A is balanced (balancedness of A° will follow by part (e) of Theorem 2.2.10 since αU contains 0).
Let $0 \leq r \leq 1,|\beta|=1$ be given, then

$$
r \beta A=\bigcap_{|\alpha|=1} r \beta(\alpha U)=\bigcap_{|\alpha|=1} r(\alpha U)
$$

Since αU is a convex set that contains 0 , we have that $r \alpha U \subset \alpha U$. We conclude that $r \beta A \subset A$.

