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taken by Duong Nguyen

2.1 Separation Properties (continued)

From previous courses in metric spaces, we know that: Given metric spaces X, Y, a continuous
map f: X — Y. If asubset K C X is compact, then f(K) is compact. Upon establishing
Hausdorff property of topological vector space, we can get the same result in TVS.

2.1.8 Corollary. Given TVS X,Y, and continuous map f : X — Y, K C X compact, then
f(K) is compact.
Note: f(K) is compact in the trace topology (f(K),Tfk)) it inherits from Y.

Proof. To get quasi-compactness, we let (V;);c; be an arbitrary open cover of f(K'), which
means f(K) C [U;c;(V;), and each Vj open in Y. Hence, (V; N f(K))je; forms an open cover
of f(K) in the trace topology 7/(K). By continuity of f, each U; = f~'(V;) is open, and
K C Ujej U,. Since K is compact by assumption, there exists 7 C .J such that |F| < oo and
K C U;cr Uj. The corresponding (V;N f(K));cr forms a finite open subcover of f(K) in 74 (k).

jeF Vi
Next, because Y is a TVS, it is Hausdorff (by theorem 2.1.5), sois (f(K), 7¢(x)), the subspace
topology inherited from topology of Y. We conclude that f(K') is compact. m

2.2 Balancedness

2.2.9 Definition. A set K of a K-vector space is called balanced if a K € K for each a € K,
with |a] <1

To reduce proofs to the special case of such neighborhoods, we need some additional insights
in properties of closure and interior of sets in topological vector spaces.

Notation: U denotes the collection of neighborhood of 0; U° denotes the interior of U
2.2.10 Theorem. Let X be a TVS, then we have the following results:
(a) For AC X, A=y (A+V).
(b) For AL BC X, A+ BC A+ B.

(c) IfY C X, and Y is a subspace, thenY is also a subspace of X.
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(d) If C € X is convex, then C and C° are convex.

(e) If K C X is balanced, then so is K. If, in addition, 0 € K°, then K° is balanced.

(f) If B C X is bounded, so is B.

Proof-

(a) Given z € A. Then, 2 € A < every neighborhood of z intersects with A <
(x+V)NA#D, foreach V eld & x € A—V. The last equivalence is because there
exists an element z so that z € A,andz = x+y, wherey € V; hence, r = z—y € A-V.
Now, let U = —V, then U € U because 0 € V. We obtain that € A if and only if
r € A+ U, for each U € U. Hence, z € |J;; (A + U). This establishes part (a).

Given a € A,b € B. Let W € U(a +b).

Then, by continuity of addition, there exists a neighborhood W, € U(a), and Wy € U(D)
such that W, + W, C W. Apply part (a) for a € A and b € B, there exist v+ € AN W,
and y € BN Wy. Therefore, for each W € U(a +b), z +y € (A+ B) N (W, + Wa).
Hence, x +y € (A+ B) N W. We conclude that a« +b € A+ B.

Given a # 0.

We recall that the map M, : X — X, x — ax, is a homeomorphism, so aY =aY. In
case o = 0, then this identity is also true.

By part (b), for a, 8 € K, aY +3Y = aY + BY C aY + Y C Y. The last relation is
because Y is a subspace of X.

For convexity of the closure, we can apply part (c) with &« = ¢, and 5 = 1—¢. In particular,
forany t € (0,1), tC + (1 —t)C =tC + (1 —t)C C tC + (1 —t)C C C. Hence, C is
convex by definition of convexity.

For interior C°, if given t € (0,1), we have tC° + (1 — ¢)C° C C (because C'is convex,
and C° C C). However, C° is open, so tC° + (1 — ¢)C° is an open set. This is because
tC° 4 (1 = t)C° = U, eco (tr + (1 — t)C°). The latter is an open set.

Since C” is the largest open set contained in C' by definition, we conclude that tC° + (1 —
t)C° C C°.

Given 0 < |o| < 1, and K C X be balanced, aK° = (aK)° because M,, is a home-
omorphism. Since K is balanced, aK° C aK C K. Moreover, aK° open implies that
aK° C K°.

Assume also that K° contains the origin, then 0K° = {0} C K°. Therefore, « K° C K°
even for a = 0.

As for the closure, we still have a X = aK because multiplication map M, is homeomor-
phism. Moreover, since K is balanced, given 0 < |a| < 1, aK C K. Therefore, oK C K.
Hence, K C K, which implies K is balanced.

Let B be bounded in X. Given V € U, we have W C V for some W € U (by Cor. 2.1.7).
Since B is bounded, there is ty > 0 such that for all ¢t > ¢y, B C tW. Hence, B C tW C
tV. We conclude that B is bounded.
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2.2.11 Remark. Closure A is defined to be the smallest closed sets that contains A. Part (a)
provides another characterization of closure A, which is the intersection of A+ V', where V' runs
through the collection of neighborhood of 0. Note that, whereas A is closed, each A + V is not
necessarily closed

We now formulate an important consequence for the structure of topological vector spaces.
2.2.12 Theorem. In topological vector spaces:
(a) Each U € U contains a balanced neighborhood of 0
(b) Each convex U € U contains a balanced convex neighborhood of 0

Proof-

(a) Let X be a TVS. If U is a neighborhood of 0 in X, then by continuity of scalar multiplication,
there is 0 > 0, and an open set V' in X such that Bs(0)V C U.
Take W = B;(0)V, then W is balanced. Moreover, W = UO#E&S(O) AV, hence W is open; it
also contains 0 (of X), and W C V.

(b) Suppose U is a convex neighborhood of 0 in X. Let A =, _; (aU).
By part (a), U contains a balanced neighborhood W of 0. For |a| = 1, we have that o'W =
W = W C aU; hence, W C A.
Therefore, A° is an open neighborhood of 0. A is convex (because U is convex by assumption).
By part (d) of Theorem 2.2.10, we have that A° is convex. What's left to show is A° is balanced.
To achieve this, it suffices to show that A is balanced (balancedness of A° will follow by part (e)
of Theorem 2.2.10 since aU contains 0).
Let 0 <r <1, |B| =1 be given, then

rfA = ﬂ rp(al) = ﬂ r(al)

laf=1 laf=1

Since aU is a convex set that contains 0, we have that raU C aU. We conclude that A C A.
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