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Last Time

• Nice local bases

• Balanced neighborhoods

• Linear functionals, continuity and null space

Recall the theorem from the previous lecture:

2.2.0 Theorem. Let Λ be a nontrivial linear functional on a topological vector space X and
there is x ∈ X with Λx 6= 0, then the following are equivalent:

(a) Λ is continuous.

(b) N (Λ) is closed.

(c) N (Λ) is not dense in X.

(d) Λ is bounded on a neighborhood V of 0.

Proof. We had (a)⇒(b)⇒(c)⇒(d).
To show (d)⇒(a), we only need to show continuity at 0, because then by linearity, Λ is continuous
everywhere, hence continuous.
Assume there is M > 0 and a neighborhood V of 0 such that

|Λx| < M

for x ∈ V . Given ε > 0, then we choose W := ε
M
V , then by linearity, for x ∈ W ,

|Λx| < ε

M
M = ε.

This finishes the proof.
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2.2.1 Exercise. The subspace c and c0 are closed subspaces of l∞ (and hence are Banach spaces).
The space c00 is only a subspace in c0, but not closed in c0 (and hence not in l∞).

c0 := {(xj)j∈N : lim
j→∞

xj = 0}

c00 = {x ∈ l∞, there is n ∈ N such that xj = 0 for all j ≥ n}.

The closure of c00 is c0.
Actually, c00 is dense in c0, i.e. c00 = c0(6= c00).
Let x(k) ∈ c0 be a sequence converging to w ∈ l∞. Take ε > 0 and N0 ∈ N such that

sup
16j6∞

|x(k)j − wj| <
ε

2

for all k > N0. For each k choose N1 ∈ N such that

|x(k)j | 6
ε

2

for all j > N1.
Thus, |wj|=|wj − 0| 6 |wj − x(k)j |+|x

(k)
j | 6 ε for j > N1, and k > N0, that means that the

sequence wj converges to 0 and w ∈ c0. Hence c0 is closed in l∞.
A specific example of a Cauchy sequence in c00 that does not have a limit in c00 is the sequence
{xn}, where xn is given by xn = (1, 1

2
, . . . , 1

n
, 0, 0, . . . ). The vectors xn do converge in l∞ norm

to the vector x= (1, 1
2
, 1
3
, . . . ), but x does not belong to c00.

While {xn} converges in c0 and in l∞, it does not converge in c00. Since c0 is complete, given a
sequence in c0 which is convergent in l∞, it is Cauchy and hence convergent in c0, so c0 is closed.
From c00 being dense in C0, we conclude it is the closure of c00 in l∞.

2.3 Finite-Dimensional (Sub)Spaces

2.3.2 Lemma. Let Y be an n-dimensional subspace of a topological vector space (TVS) X,
then

(a) every vector-space isomorphism f : Kn −→ Y is a homeomorphism, and

(b) Y is closed.

Proof. (a) Take S := {x ∈ Kn,
∑n

j=1 |xj|2 = 1}, then S is compact. Consider the map

f : Kn −→ Y, (cj)
n
j=1 7→

n∑
j=1

cjvj,

with {vj}nj=1 fixed basis in Y , we first show f is continuous:
Denote by {cj} the standard basis in Kn and set

vj = f(cj) j = 1, . . . , n.
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By linearity, for any c = (c1, . . . , cn),

f(c) =
n∑
j=1

cjvj.

The map c 7→ cj is continuous and so are the addtion and scalar multiplication in Y . Thus, f is
continuous.
We then have that f(S) ≡ K is quasi-compact. Since Y inherits the Hausdorff property of X,
K is compact.
Next, f(0) = 0, and we know 0 = f(0) /∈ K by linear independence of {vj}nj=1. Take balanced
neighborhood V of 0 in X such that V ∩K = ∅, then

E = f−1(V ) = f−1(V ∩ Y )

does not intersect S. By linearity, E is balanced (in Kn), and hence connected. So E ⊂ BKn

1 (0).
Thus, f−1 is a bounded linear map, hence continuous.
We conclude that f is homeomorphism.

(b) For closedness, let p ∈ Y , and choose f and V be as above.
By Theorem 11.5.6 given in previous notes, we know there is t > 0 such that p ∈ tV .
Since p ∈ tV and p ∈ Y implies that for every open set U 3 x, U ∩ tV is open and contains x,
and then by the characterization of the closure, U ∩ tV ∩ Y 6= ∅, so

p ∈ Y ∩ (tV ).

Now using the choice of tV so that tV ∩ Y = f(f−1(tV ∩ Y )) ⊂ f(tBKn

1 (0)),

p ∈ Y ∩ (tV ) ⊂ f(tBKn

1 (0)) ⊂ f(tBKn

1 (0) = f(tBKn

1 (0)) ⊂ Y .

The last identity is because f−1 is continuous, so f maps closed sets to closed sets. Hence, Y is
closed.

2.3.3 Lemma. Let Y ⊂ X be a locally compact sub-vector space of a TVS X, then Y is closed
and finite-dimensional in X.

Proof. By definition of local compactness, (Y, τY ) has a compact neighborhood K of 0. By an
earlier theorem, K is bounded. Thus, ( 1

n
K)n∈N is a local base.

Let V be a balanced open neighborhood in K0. We know
⋃
x∈K(x + 1

2
V ) is an open cover of

K, so there exist x1, x2, . . . , xm ∈ K such that

K ⊂
m⋃
j=1

(xj +
1

2
V )

Take Z = Span{xj}mj=1, so dim Z ≤ m, and by the preceding lemma (Lemma 2.3.1), Z is
closed. Replacing each xj by Z, we get

V ⊂ K ⊂ Z +
1

2
V
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Since λZ = Z for every scalar λ 6= 0, we have 1
2
Z = Z. Scaling by 1

2
gives

1

2
V ⊂ Z +

1

4
V

which implies

V ⊂ Z +
1

2
V ⊂ Z + Z +

1

4
V = Z +

1

4
V.

Continuing in this manner, we get

V ⊂ Z +
1

2n
V

for each n ∈ N and from V ⊂
⋂
n∈N(Z + 1

2n
V ), using the local base property of ( 1

2n
V )n∈N, we

have V ⊂ Z.
Next, Z is finite - dimensional, so Z = Z, so V ⊂ Z = 1

k
Z for any k ∈ N, or equivalently,

kV ⊂ Z.
Taking the union over all kV gives by the exhausting property of balanced neighborhoods

Z =
⋃
k∈N

(kV ) = Y.

Thus, dim Y ≤ m and Y is closed.

2.4 Seminorms and local convexity

In this section we will see that locally convex TVS are characterized as topologies given by
seminorms.
We recall the characterization of the initial topology with respect to (fi)i∈I , fi : X → Xi and
the product topology on

∏
i∈I Xi, such that

η : X →
∏
i∈I

Xi, x 7→ (fi(x))i∈I

is continuous.
We say that η or (fi)i∈I separates points of X if η is 1-1.
In that case, we can identify X with η(X) and then the initial topology τX is the trace topology
on η(X) in

∏
i∈I Xi.
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