Functional Analysis, Math 7320
 Lecture Notes from October 6, 2016

taken by Jason Duvall

Last time:

1. Finite dimensional subspaces and linear maps
2. Closedness of finite dimensional subspaces
3. Finite dimensionality of spaces with locally compact bases
2.7.1 Problem. Suppose X and Y are topological vector spaces with $n=\operatorname{dim}(Y)<\infty$ and $A: X \rightarrow Y$ is linear and onto. Show that A is an open map.

Proof. Y is homeomorphic to \mathbb{K}^{n}, which means that we may assume without loss of generality that $Y=\mathbb{K}^{n}$. Now choose an arbitrary open set $U \subset X$. To show that $A(U)$ is open, we will show that for any point $A x \in A(U)$ there exists $N \in \mathcal{O}(A x)$ such that $N \subset A(U)$. This will imply that the arbitrary point $A x$ is an interior point of $A(U)$, and hence, that $A(U)$ is open. The idea of the proof is to restrict A so that it becomes continuous.

Since A is onto, we can choose elements $\left\{x_{j}\right\}_{j=1}^{n} \subset X$ such that $A x_{j}=e_{j}$ for $1 \leq j \leq n$. Here $\left\{e_{j}\right\}_{j=1}^{n}$ is the standard basis for \mathbb{K}^{n}. Now define a map $B: \mathbb{K}^{n} \rightarrow X$ by $B a=\sum_{i=1}^{n} a_{j} x_{j}$ where $\left\{a_{j}\right\}_{j=1}^{n}$ are the coordinates of a with respect to the standard basis. From prior lessons we know that B is linear and continuous so that B^{-1} is an open map.

Observe that $B^{-1}(U) \subset A(U)$. This follows because if $a=\left\langle a_{1}, \ldots a_{n}\right\rangle \in B^{-1}(U)$ then $B a=\sum_{j=1}^{n} a_{j} x_{j}$. Therefore $A\left(\sum_{j=1}^{n} a_{j} x_{j}\right)=\sum_{j=1}^{n} a_{j} e_{j}=a$ so that $a \in A(U)$.

Now assume that $0 \in U$. It follows that $B^{-1}(U) \in \mathcal{O}(0)$ so that $A(U)$ contains an open neighborhood of 0 . If $0 \notin U$, then choose any vector $y_{0} \in A(U)$ and find x_{0} so that $A x_{0}=y_{0}$ by the surjectivity of A. If $\tilde{U}=U-x_{0}$ then $\tilde{U} \in \mathcal{O}(x)$. By what we have just shown there exists $\tilde{V} \in \mathcal{O}(0)$ such that $\tilde{V} \subset A(\tilde{U})$. But then $V=\tilde{V}+A x_{0} \in \mathcal{O}\left(A x_{0}\right)$ and $V \subset A(U)$.
2.7.2 Lemma. Suppose X is a vector space, $\left\{X_{i}\right\}$ is a family of topological vector spaces, and that $\left\{f_{i}: X \rightarrow X_{i}\right\}$ is a family of maps which separates points. Then X is a topological vector space with the initial topology.

Proof. Each map f_{i} is continuous with respect to the initial topology on X by the definition of the initial topology. And for any $x \in X$ and i we know that $\left\{f_{i}(x)\right\}$ is a closed set since X_{i} is T_{1}. Therefore, since f pulls closed sets back to closed sets, we have that $\{x\}=\bigcap_{i} f_{i}^{-1}\left(\left\{f_{i}(x)\right\}\right)$ is an intersection of closed sets, and hence, is closed. The set equality follows because the family
$\left\{f_{i}\right\}$ separates points; hence, if $y \in \bigcap_{i} f_{i}^{-1}\left(\left\{f_{i}(x)\right\}\right)$, then for every i we have $f_{i}(y)=f_{i}(x)$ which forces $y=x$.

Recall that the function $\eta: X \rightarrow \prod_{i} X_{i}$ given by $\eta(x)=\left(f_{i}(x)\right)_{i}$ is continuous and linear. This is because the mapping $(x, y) \mapsto f_{i}(x+y)=f(x)+f(y)$ is a composition of the continuous operation of addition in X_{i} and the map $x \mapsto f_{i}(x)$, and so is continuous with respect to the product topology. Similarly the mapping $(\alpha, x) \mapsto \alpha f_{i}(x)=f_{i}(\alpha x)$ is continuous.

Now we can identify X with $\eta(X) \subset \prod_{i} X_{i}$. Thus X inherits the relative topology from the product topology on $\prod_{i} X_{i}$ and so becomes a topological vector space by what we have shown.

If we apply this result to the case in which $X=\prod_{i} X_{i}$ and $f_{i}=\pi_{i}$ is projection onto the i-th coordinate, we get the following.
2.7.3 Corollary. The Cartesian product of a family of topological vector spaces is itself a topological vector space. Furthermore, with f_{i}, X, and X_{i} as in ??, the map $\eta: x \mapsto\left(f_{i}(x)\right)_{i}$ gives an embedding of X into $\prod_{i} X_{i}$.
2.7.4 Lemma. (a) Given a semi-norm p on a vector space X, the set $N_{p}=\{x: p(x)=0\}$ is a subspace of X and X / N_{p} is a normed space with norm $\left\|x+N_{p}\right\|=p(x)$.
(b) If $f: X \rightarrow Y$ is linear map from a vector space X to a normed linear space Y, then $p_{f}(x)=\|f(x)\|$ defines a semi-norm on X, and every semi-norm on X is obtained in this way via a function $f: X \rightarrow Y$ and a normed linear space Y.

Proof. For part (a) we need only show positive-definiteness. So suppose $\left\|x+N_{p}\right\|=0$. then $p(x)=0$ so that $x \in N_{p}$ and hence $x \sim 0$. Thus $x+N_{p}$ is the 0 element in X / N_{p}.

For part (b), the verification that p_{f} is a semi-norm on X is trivial and follows from the properties of the norm on Y. For the final claim, choose a semi-norm p on X and define $Y=X / N_{p}$ with the quotient norm. Then the canonical quotient map $q: x \mapsto x+N_{p}$ is the desired function f which makes the equality $p_{f}(x)=p(x)$ hold.
2.7.5 Definition. A family of semi-norms $\left\{p_{i}\right\}$ on a vector space X is said to separate points if $\bigcap_{i} N_{p_{i}}=\left\{x: p_{i}(x)=0\right.$ for all $\left.i\right\}=\{0\}$.
2.7.6 Theorem. If $\left\{p_{i}\right\}_{i \in I}$ is a family of semi-norms on a vector space X which separates points, for $\epsilon \in \mathbb{R}$ and $i \in I$ define a set $V\left(p_{i}, \epsilon\right)=\left\{x: p_{i}(x)<\epsilon\right\}$. Then

$$
\mathcal{B}=\left\{V\left(p_{i_{1}}, \epsilon\right) \cap \cdots \cap V\left(p_{i_{n}}, \epsilon\right): \epsilon>0,\left\{i_{1}, \ldots, i_{n}\right\} \subset I\right\}
$$

is a local base of the vector space topology induced by $\left\{p_{i}\right\}$.
Proof. For $i \in I$ let $q_{i}: X \rightarrow X / N_{p_{i}}$ be the canonical quotient maps. By ??, $X / N_{p_{i}}$ is a normed linear space for each $i \in I$ with the quotient norm defined there. The quotient maps $\left\{q_{i}\right\}$ give rise to an initial topology τ on \mathbb{X}. Now any sequence of open balls centered at 0 whose radii decrease to 0 defines a local base in $X / N_{p_{i}}$ for any $i \in I$. Recall that τ is generated by arbitrary unions of finite intersections of open sets of the form $q_{i}^{-1}\left(U_{i}\right)$ where U_{i} is open in $X / N_{p_{i}}$. So if $x \in X$ and $U \in \mathcal{O}(x)$ then U contains a basis element for τ, namely, a finite intersection of sets $V\left(p_{i}, \epsilon\right)$. So for every $U \in \mathcal{X}$ there exists $B \in \mathcal{B}$ with $B \subset U$.
2.7.7 Corollary. The collection $\left\{p_{i}\right\}$ in ?? define a locally convex topology on X.

Proof. $V\left(p_{i}, \epsilon\right)$ is the inverse image of a ball under a linear map and so is convex. Thus any finite intersection of sets of this form is convex.
2.7.8 Definition. Suppose X is a vector space.
(a) For $A \subset X$ define the Minkowski functional $\mu_{A}: X \rightarrow[0, \infty]$ by $\mu_{A}=\inf \{t>0: x \in t A\}$.
(b) $A \subset X$ said to be absorbing if $X=\bigcup_{t>0} t A$.

Note that a set A is absorbing if and only if μ_{A} never takes the value $+\infty$. Also, every absorbing set contains 0 .

