Functional Analysis, Math 7320
Lecture Notes from October 6, 2016

taken by Jason Duvall

Last time:

1. Finite dimensional subspaces and linear maps

2. Closedness of finite dimensional subspaces

3. Finite dimensionality of spaces with locally compact bases

2.7.1 Problem. Suppose X and Y are topological vector spaces with n = dim(Y) < oo and
A: X — Y is linear and onto. Show that A is an open map.

Proof. Y is homeomorphic to K", which means that we may assume without loss of generality
that Y = K™. Now choose an arbitrary open set U C X. To show that A(U) is open, we will
show that for any point Ax € A(U) there exists N € O(Ax) such that N C A(U). This will
imply that the arbitrary point Ax is an interior point of A(U), and hence, that A(U) is open.
The idea of the proof is to restrict A so that it becomes continuous.

Since A is onto, we can choose elements {z;}7_; C X such that Az; = ¢; for 1 < j < n.
Here {e;}’_, is the standard basis for K". Now define a map B: K* — X by Ba = )", a;x;
where {a;}7_, are the coordinates of a with respect to the standard basis. From prior lessons we
know that B is linear and continuous so that B! is an open map.

Observe that B~ (U) c A(U). This follows because if a = (ay,...a,) € B *(U) then
Ba =377 a;r;. Therefore A(3_7_, a;x;) =3 7 aje; = a so that a € A(U).

Now assume that 0 € U. It follows that B~'(U) € O(0) so that A(U) contains an open
neighborhood of 0. If 0 ¢ U, then choose any vector yy € A(U) and find zq so that Azy = y
by the surjectivity of A. If U = U —z, then U € O(z). By what we have just shown there exists
V € O(0) such that V C A(U). But then V =V + Azy € O(Axy) and V C A(U). O

2.7.2 Lemma. Suppose X is a vector space, {X;} is a family of topological vector spaces, and
that {f;: X — X,} is a family of maps which separates points. Then X is a topological vector
space with the initial topology.

Proof. Each map f; is continuous with respect to the initial topology on X by the definition of
the initial topology. And for any z € X and ¢ we know that {f;(z)} is a closed set since X is
Ty. Therefore, since f pulls closed sets back to closed sets, we have that {z} = (", f; *({fi(z)})
is an intersection of closed sets, and hence, is closed. The set equality follows because the family



{f;} separates points; hence, if y € (N, f'({fi(z)}), then for every i we have fi(y) = fi(x)
which forces y = z.

Recall that the function n: X — []. X; given by n(x) = (fi(z)); is continuous and linear.
This is because the mapping (z,y) — fi;(x+y) = f(x)+ f(y) is a composition of the continuous
operation of addition in X; and the map = — f;(x), and so is continuous with respect to the
product topology. Similarly the mapping (o, z) — afi(z) = fi(ax) is continuous.

Now we can identify X with 7(X) C [[, X;. Thus X inherits the relative topology from
the product topology on [[, X; and so becomes a topological vector space by what we have
shown. [

If we apply this result to the case in which X =[], X; and f; = 7, is projection onto the i-th
coordinate, we get the following.

2.7.3 Corollary. The Cartesian product of a family of topological vector spaces is itself a topo-
logical vector space. Furthermore, with f;, X, and X; as in 72, the map n:  — (f;(x)); gives
an embedding of X into [[, X;.

2.7.4 Lemma. (a) Given a semi-norm p on a vector space X, the set N, = {z: p(z) =0} is a
subspace of X and X /N, is a normed space with norm ||z + N,| = p(x).

(b) If f: X — Y s linear map from a vector space X to a normed linear space Y, then
pr(x) = || f(x)| defines a semi-norm on X, and every semi-norm on X is obtained in this
way via a function f: X — Y and a normed linear space Y .

Proof. For part (a) we need only show positive-definiteness. So suppose |z + N,|| = 0. then
p(xz) = 0 so that x € N, and hence  ~ 0. Thus z + N, is the 0 element in X/N,,.

For part (b), the verification that p; is a semi-norm on X is trivial and follows from the
properties of the norm on Y. For the final claim, choose a semi-norm p on X and define
Y = X/N, with the quotient norm. Then the canonical quotient map ¢: z — x + N, is the
desired function f which makes the equality ps(z) = p(x) hold. O

2.7.5 Definition. A family of semi-norms {p;} on a vector space X is said to separate points if
M Np; = {z: pi(xz) =0 for all i} = {0}.

2.7.6 Theorem. If {p;}ic; is a family of semi-norms on a vector space X which separates points,
fore € R and i € I define a set V (p;,¢) = {x: pi(x) < €}. Then

B={V(py,e)N---NV(p,e):€>0,{ig,...,i,} C I}
is a local base of the vector space topology induced by {p;}.

Proof. Fori € I let ¢;: X — X /N, be the canonical quotient maps. By ??, X/N,, is a normed
linear space for each i € I with the quotient norm defined there. The quotient maps {¢;} give
rise to an initial topology 7 on X. Now any sequence of open balls centered at 0 whose radii
decrease to 0 defines a local base in X/N,, for any i € I. Recall that 7 is generated by arbitrary
unions of finite intersections of open sets of the form ¢; ' (U;) where U; is open in X/N,,. So if
x € X and U € O(x) then U contains a basis element for 7, namely, a finite intersection of sets
V(pi, €). So for every U € X there exists B € B with B C U. O



2.7.7 Corollary. The collection {p;} in ?? define a locally convex topology on X .

Proof. V (p;, €) is the inverse image of a ball under a linear map and so is convex. Thus any
finite intersection of sets of this form is convex. O]

2.7.8 Definition. Suppose X is a vector space.
(a) For A C X define the Minkowski functional ji4: X — [0, 00] by s = inf{t > 0: x € tA}.
(b) A C X said to be absorbing if X = (J,.,tA.

Note that a set A is absorbing if and only if 4 never takes the value +o0co. Also, every
absorbing set contains 0.



