
Functional Analysis, Math 7320
Lecture Notes from October 6, 2016

taken by Jason Duvall

Last time:

1. Finite dimensional subspaces and linear maps

2. Closedness of finite dimensional subspaces

3. Finite dimensionality of spaces with locally compact bases

2.7.1 Problem. Suppose X and Y are topological vector spaces with n = dim(Y ) < ∞ and
A : X → Y is linear and onto. Show that A is an open map.

Proof. Y is homeomorphic to Kn, which means that we may assume without loss of generality
that Y = Kn. Now choose an arbitrary open set U ⊂ X. To show that A(U) is open, we will
show that for any point Ax ∈ A(U) there exists N ∈ O(Ax) such that N ⊂ A(U). This will
imply that the arbitrary point Ax is an interior point of A(U), and hence, that A(U) is open.
The idea of the proof is to restrict A so that it becomes continuous.

Since A is onto, we can choose elements {xj}nj=1 ⊂ X such that Axj = ej for 1 ≤ j ≤ n.
Here {ej}nj=1 is the standard basis for Kn. Now define a map B : Kn → X by Ba =

∑n
i=1 ajxj

where {aj}nj=1 are the coordinates of a with respect to the standard basis. From prior lessons we
know that B is linear and continuous so that B−1 is an open map.

Observe that B−1(U) ⊂ A(U). This follows because if a = 〈a1, . . . an〉 ∈ B−1(U) then
Ba =

∑n
j=1 ajxj. Therefore A(

∑n
j=1 ajxj) =

∑n
j=1 ajej = a so that a ∈ A(U).

Now assume that 0 ∈ U . It follows that B−1(U) ∈ O(0) so that A(U) contains an open
neighborhood of 0. If 0 /∈ U , then choose any vector y0 ∈ A(U) and find x0 so that Ax0 = y0
by the surjectivity of A. If Ũ = U −x0 then Ũ ∈ O(x). By what we have just shown there exists
Ṽ ∈ O(0) such that Ṽ ⊂ A(Ũ). But then V = Ṽ + Ax0 ∈ O(Ax0) and V ⊂ A(U).

2.7.2 Lemma. Suppose X is a vector space, {Xi} is a family of topological vector spaces, and
that {fi : X → Xi} is a family of maps which separates points. Then X is a topological vector
space with the initial topology.

Proof. Each map fi is continuous with respect to the initial topology on X by the definition of
the initial topology. And for any x ∈ X and i we know that {fi(x)} is a closed set since Xi is
T1. Therefore, since f pulls closed sets back to closed sets, we have that {x} =

⋂
i f
−1
i ({fi(x)})

is an intersection of closed sets, and hence, is closed. The set equality follows because the family
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{fi} separates points; hence, if y ∈
⋂

i f
−1
i ({fi(x)}), then for every i we have fi(y) = fi(x)

which forces y = x.
Recall that the function η : X →

∏
iXi given by η(x) = (fi(x))i is continuous and linear.

This is because the mapping (x, y) 7→ fi(x+y) = f(x)+f(y) is a composition of the continuous
operation of addition in Xi and the map x 7→ fi(x), and so is continuous with respect to the
product topology. Similarly the mapping (α, x) 7→ αfi(x) = fi(αx) is continuous.

Now we can identify X with η(X) ⊂
∏

iXi. Thus X inherits the relative topology from
the product topology on

∏
iXi and so becomes a topological vector space by what we have

shown.

If we apply this result to the case in which X =
∏

iXi and fi = πi is projection onto the i-th
coordinate, we get the following.

2.7.3 Corollary. The Cartesian product of a family of topological vector spaces is itself a topo-
logical vector space. Furthermore, with fi, X, and Xi as in ??, the map η : x 7→ (fi(x))i gives
an embedding of X into

∏
iXi.

2.7.4 Lemma. (a) Given a semi-norm p on a vector space X, the set Np = {x : p(x) = 0} is a
subspace of X and X/Np is a normed space with norm ‖x+Np‖ = p(x).

(b) If f : X → Y is linear map from a vector space X to a normed linear space Y , then
pf (x) = ‖f(x)‖ defines a semi-norm on X, and every semi-norm on X is obtained in this
way via a function f : X → Y and a normed linear space Y .

Proof. For part (a) we need only show positive-definiteness. So suppose ‖x + Np‖ = 0. then
p(x) = 0 so that x ∈ Np and hence x ∼ 0. Thus x+Np is the 0 element in X/Np.

For part (b), the verification that pf is a semi-norm on X is trivial and follows from the
properties of the norm on Y . For the final claim, choose a semi-norm p on X and define
Y = X/Np with the quotient norm. Then the canonical quotient map q : x 7→ x + Np is the
desired function f which makes the equality pf (x) = p(x) hold.

2.7.5 Definition. A family of semi-norms {pi} on a vector space X is said to separate points if⋂
iNpi = {x : pi(x) = 0 for all i} = {0}.

2.7.6 Theorem. If {pi}i∈I is a family of semi-norms on a vector space X which separates points,
for ε ∈ R and i ∈ I define a set V (pi, ε) = {x : pi(x) < ε}. Then

B = {V (pi1 , ε) ∩ · · · ∩ V (pin , ε) : ε > 0, {i1, . . . , in} ⊂ I}

is a local base of the vector space topology induced by {pi}.

Proof. For i ∈ I let qi : X → X/Npi be the canonical quotient maps. By ??, X/Npi is a normed
linear space for each i ∈ I with the quotient norm defined there. The quotient maps {qi} give
rise to an initial topology τ on X. Now any sequence of open balls centered at 0 whose radii
decrease to 0 defines a local base in X/Npi for any i ∈ I. Recall that τ is generated by arbitrary
unions of finite intersections of open sets of the form q−1i (Ui) where Ui is open in X/Npi . So if
x ∈ X and U ∈ O(x) then U contains a basis element for τ , namely, a finite intersection of sets
V (pi, ε). So for every U ∈ X there exists B ∈ B with B ⊂ U .
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2.7.7 Corollary. The collection {pi} in ?? define a locally convex topology on X.

Proof. V (pi, ε) is the inverse image of a ball under a linear map and so is convex. Thus any
finite intersection of sets of this form is convex.

2.7.8 Definition. Suppose X is a vector space.

(a) For A ⊂ X define the Minkowski functional µA : X → [0,∞] by µA = inf{t > 0: x ∈ tA}.

(b) A ⊂ X said to be absorbing if X =
⋃

t>0 tA.

Note that a set A is absorbing if and only if µA never takes the value +∞. Also, every
absorbing set contains 0.
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