Functional Analysis, Math 7320 Lecture Notes from October 11, 2016

taken by Grant Getzelman

2.8 Warm Up

2.8.1 Problem. Let \mathcal{X} be a Topogical Vector Space and \mathcal{Y} a closed subspace, and \mathcal{F} a finite dimentional subspace. Show $\mathcal{Y} + \mathcal{F}$ is closed.

Proof. Note that the Quoient topology is the final topology on the quotient space \mathcal{X}/\mathcal{Y} with respect to the Quotient map $q: \mathcal{X} \to \mathcal{X}/\mathcal{Y}$, thus q is continuous. Recall that in the quotient topology equivalence classes are defined by $[x] = \{x + y : y \in \mathcal{Y}\}$, thus $q(x) = x + \mathcal{Y}$. Given α from the field \mathbb{F} from our Topogical Vector Space \mathcal{X} , and $x, z \in \mathcal{X}$, then we have

$$\begin{aligned} \alpha q(x) &= \alpha(x + \mathcal{Y}) = \alpha[x] = \{\alpha x + \alpha y : y \in \mathcal{Y}\} = \{\alpha x + y : y \in \mathcal{Y}\} = [\alpha x] = q(\alpha x) \\ q(x+z) &= x + z + \mathcal{Y} = [x+z] = \{x + z + y : y \in \mathcal{Y}\} = \{x + z + 2y : y \in \mathcal{Y}\} = \\ \{\alpha x + \alpha y : y \in \mathcal{Y}\} + \{\alpha z + \alpha y : y \in \mathcal{Y}\} = [x] + [z] = q(x+z) \end{aligned}$$

Thus q is a linear map. Map \mathcal{F} to $q(\mathcal{F})$, and observe that $q(\mathcal{F})$ is a finite dimensional vector space and is closed by the linearity of q and the closedness of finite dimensional subspaces. As $[0] = \{y : y \in \mathcal{Y}\}$, then $q^{-1}(x) = x + \mathcal{Y}$ and $q^{-1}(q(\mathcal{F})) = \mathcal{Y} + \mathcal{F}$. Lastly, recall that if q is continuous then the preimage of a closed set is close hence $\mathcal{Y} + \mathcal{F}$ is closed.

Notice how our tools make this proof so easy. Next we see how certain topologies imply the existence of seminorms.

2.8.2 Theorem. Let A be an absorbing set and μ_A the minkowski functional, the we have the following results:

- (a) For any $\lambda \ge 0$ and $x \in \mathcal{X}$, $\mu_A(\lambda x) = \lambda \mu_A(x)$.
- (b) If A is convex, then μ_A is subadditive.
- (c) If A is convex and balanced, then μ_A is a seminorm.
- (d) If $B := \{x \in \mathcal{X} : \mu_A < 1\}$, and $C := \{x \in \mathcal{X} : \mu_A \leq 1\}$, then $B \subset A \subset C$, and $\mu_A = \mu_B = \mu_C$.
- (e) If p is a seminorn on \mathcal{X} , then $p = \mu_A$ with $A = \{ x \in \mathcal{X} : p(x) < 1 \}$.

(f) If $B \subset X$ is bounded, so is \overline{B} .

- *Proof.* (a) Recall that a set A is absorbing if for every $x \in \mathcal{X}$ there exist a t > 0 such that $x \in tA$. In particular if x = 0 then $0 \in tA$ implies there exists an $a \in A$ and a t such that at = 0 thus a = 0, and $0 \in A$. Given $\lambda \ge 0$, $\mu_A(\lambda x) = \inf\{t > 0 : \lambda x \in tA\} = \lambda \inf\{t > 0 : x \in tA\} = \lambda \mu_A(x)$.
 - (b) We want to show for $x, y \in \mathcal{X}$ that, $\mu_A(x+y) \le \mu_A(x) + \mu_A(y)$. Let $\epsilon > 0$, $t = \mu_A(x) + \epsilon$, $s = \mu_A(y) + \epsilon$. Note, $\frac{x}{t} \in A$ and $\frac{y}{s} \in A$ by definition of μ_A . $\frac{t}{s+t} \frac{x}{t} + \frac{s}{s+t} \frac{y}{s} = \frac{x+t}{s+t} \in A$ by convexity. Thus $\mu_A(x+y) \le s+t = \mu_A(x) + \mu_A(y) + 2\epsilon$. This is true for every $\epsilon > 0$, hence $\mu_A(x+y) \le \mu_A(x) + \mu_A(y)$.
 - (c) μ_A is a seminorm if $\mu_A(x+y) \le \mu_A(x) + \mu_A(y)$ and $\mu_A(\alpha x) = |\alpha|\mu_A(x)$, for all $x, y \in \mathcal{X}$ and scalers α . The first part follows from part b. By assumption, A is convex absorbing and balanced so given $t \in \mathbb{K}$ we let $t = |t| + \alpha$ with $|\alpha| = 1$. Balacedness then implies $\mu_A(tx) = |t|\mu_A(\alpha x) = |t|\mu_A(x)$.
 - (d) $B \subset A \subset C$ clearly gives $\mu_C \leq \mu_A \leq \mu_B$. To show equality let $x \in \mathcal{X}$, choose s and t such that $\mu_C(x) < s < t$, then $\frac{x}{s} \in C$ so $\mu_A(\frac{x}{s}) \leq 1$ by definition of C. Thus $\mu_A(\frac{s}{t}\frac{x}{s}) \leq \frac{s}{t} < 1$ so $\frac{x}{t} \in B$ and $\mu_B(x) \leq t$.

This works for any s, t with $t > s > \mu_C(x)$ so $\mu_B(x) \le \mu_C(x)$. This implies $\mu_C = \mu_A = \mu_B$.

(e) Consider A as defined by p, this A is Balanced. We also see A is convex if $x, y \in A$, 0 < t < 1, then $p(tx + (1 - t)y) \le tp(x) + (1 - t)p(y)$ we also know A is absorbing.

If
$$x \in \mathcal{X}$$
 and $s > p(x)$, then $p(\frac{x}{s}) = \frac{1}{s}p(x) < 1$. So $\mu_A(x) \le s$, and thus $\mu_A \le p$

On the other hand if $0 < t \le p(x)$, then $p(\frac{x}{t}) \ge 1$ and $t^{-1}x \notin A$. By the balancedness of A, $p(x) \le \mu_A(x)$. Lastly as A is absorbing we know $\mu_A(x)$ is finite for all $x \in \mathcal{X}$. We conclude $p = \mu_A$.

2.8.3 Remark. We can convert between seminorms and minkowsiki functionals of convex balaced open neighborhoods.

2.8.4 Theorem. Let \mathbb{B} be a convex balanced local open base in a Topological Vector Space \mathcal{X} then,

- (a) If $V \in \mathbb{B}$, then $V = \{x \in \mathcal{X} : \mu_V(x) < 1\}$
- (b) $(\mu_V)_{V \in \mathbb{B}}$ is a family of continous seminorms that separates points on \mathcal{X} .
- *Proof.* (a) If $x \in V$, then by V being open and continuity of $(\alpha, x) \mapsto \alpha x$. We have $\frac{x}{t} \in V$ for some t < 1. Thus $\mu_V(x) < 1$. On the other hand, if $x \notin V$ and $\frac{x}{t} \in V$ then by the

balancedness of V, if $|\frac{1}{t}| \le 1$ implies $\frac{1}{t}V \subset V$ and $x \in V$ thus t > 1. We conclude in this case $\mu_V(x) \ge 1$.

(b) Next, μ_V is a seminorm by $V \in \mathbb{B}$ using the preceding part, we set r > 0, $x, y \in \mathcal{X}$ from the triangle inequality, $|\mu_V(x) - \mu_V(y)| \le \mu_V(x - y)$ and if $x - y \in rV$ scaling gives $\mu_V(x - y) < r$. As r > 0 is the radius of the ball that characterizes the topology, then μ_V is continous. Moreover if $x \in \mathcal{X} \setminus \{0\}$, then there is $V \in \mathbb{B}$ such that $x \notin V$. So $\bigcap_{V \in \mathbb{B}} = \{0\}$, and thus μ_V separate points.

Next we characterize the topology induced by these seminorms.

2.8.5 Lemma. A seminorm p on a Topological Vector Space \mathcal{X} is continuous, iff $V(p,1) = \{x \in \mathcal{X} : p(x) < 1\}$ is a bounded neighborhood of 0.

Proof. If p is continuous this is true by definition. Conversely suppose V(p,1) is a neighborhood of 0. By scaling with r > 0, $rV(p,1) = \{x \in \mathcal{X} : p(x) < r\}$. Which gives a local base , obtained as $rV(p,1) = p^{-1}(B_r(0))$. Moreover, given $\epsilon > 0$, $x \in \mathcal{X}$ and r = p(x), then if $q < \epsilon$, we have $p(x + qV(p,1)) \subset r + B_{\epsilon}(0)$. Thus p is continuous at each $x \in \mathcal{X}$.

2.8.6 Theorem. Let \mathcal{P} be a family of seminorms on a vector space \mathcal{X} that separates points, and $V(p, \frac{1}{n}) = \{x : p(x) < \frac{1}{n}\}$. Let \mathbb{B} be the collection $\mathbb{B} = \{V = \bigcap_{i=1}^{n} V(p_i, \frac{1}{n}\}$, then \mathbb{B} is a convex balanced local base for a topology \mathcal{T} on \mathcal{X} which makes \mathcal{X} a locally convex Topological Vector Space, and

- (a) Each $p \in \mathcal{P}$ is continous.
- (b) $E \subset \mathcal{X}$ is bounded iff each p is bounded on E.