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11.5.1 Theorem. Let P be a family of seminorms on vector space X that separate points. For
p ∈ P , let V (p, 1

n
) := {x : p(x) < 1

n
} and let B be the collection

B :=

{
n⋂
i=1

V

(
pi,

1

n

)
: n ∈ N, i ∈ I ⊂ N, |I| = n

}
.

Then

(a) B is a convex balanced local base for a topology τ on X which makes X a locally convex
topological vector space,

(b) each p is continuous, and

(c) each E ⊂ X is bounded if and only if each p is bounded on E.

Proof. Let P , X, V,B be as in the hypothesis, and take τ to be the topology on X generated by
subbase X + B, the collection of sets of the form x+

⋂n
1 V (pi,

1
n
).

Since each set V (p, 1
n
) is the inverse image of a (convex) ball by a linear map, we have that

B is comprised by convex balanced sets, and thus bB is a convex balanced base for τ .
To show that τ endows X with the properties of a topological vector space, we examine τ ’s

construction. Note first that by definition, each V (p, 1
n
) is open. We further observe that X +B

generates a base B for τ by finite intersections, so that A ∈ B implies that A is of the form⋂m
i=1(xi + Bi), Bi ∈ B; since the elements Bi ∈ B are themselves finite intersections, we can

express A ∈ B as

A =
m⋂
i=1

[
xi + V

(
pi,

1

ni

)]
with each triple (xi, pi, ni) ∈ X × P × N.

Now, we demonstrate that points are closed. If x ∈ X\{0}, then the assumption that P
separates points provides the existence of p ∈ P such that p(x) > 0. Let n be an integer
greater than 1/p(x), so that p(x) > 1/n. Then x /∈ V (p, 1

n
) and 0 ∈ V (p, 1

n
) together give that

0 /∈ x − V (p, 1
n
) ∈ τ . It follows that x /∈ {0} for all nonzero x ∈ X, and we conclude that

{0} = {0}. By translational invariance, {y} is closed for each y ∈ X.
Next, we note that U ∈ U implies 0 ∈ V (p1,

1
n1

)∩· · ·∩V (pm,
1
nm

) ⊂ U for some {pi}m1 , {ni}m1 .
To see this, we consider W ⊂ U such that W is an open set containing zero; We may take W to be
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the finite intersection of sets Vi := y+V (pi,
1
ni

), each containing 0. It follows that−y ∈ V (pi,
1
ni

).

Since the V (pi,
1
ni

) are open, we can choose ε ∈ (0, 1/ni), giving −y + V (pi,
1
ε
) ⊂ V (pi,

1
ni

).

Thus, 0 ∈ V (pi,
1
ε
) ⊂ y + V (pi,

1
ni

);

To show continuity of addition, let V := V (p1,
1

2n1
) ∩ · · · ∩ V (pm,

1
2nm

), so that V + V ⊂ U
(by the subadditivity of the pi’s). It follows that the vector sum is continuous at 0, and therefore
continuous everywhere.

Next, keeping U, V as above, then if x ∈ X,α ∈ K,we have x ∈ sV for some s > 0.
Set t := s

1+|α|s , and let y := x+ tV . We take β ∈ K such that |β−α| < 1/s, notably giving

|β| < |α|+ 1/s. Then

βy − αx = β(y − x) + (β − α)x (by def’n, y − x ∈ tV )

∈ |β|tV + |β − α|sV
⊂ V + V

⊂ U.

Thus, (α, x) 7→ αx is continuous. We turn our attention to (b). Let p ∈ P and note that, by
definition, V (p, 1) is a neighborhood of 0. Scaling by α > 0, we observe that by homogeneity of
the seminorm,

αV (p, 1) = {x ∈ X : p(x) < α} (1)

= p−1 (Bα(0)) . (2)

Now, given ε > 0, x ∈ X, and r := p(x) we have that for q ∈ (0, ε), p(x + qV (p, 1)) ⊂
r +Bε(0).

11.5.2 Corollary. If (X, τ) is a topological vector space with balanced local base B of open sets,
then the seminorms P = {µr}r∈B induce a topology which is identical to that of X.

Proof. Let τ1 be the topology induced by P . by continuity of the seminorms, we have that
V (p, 1

n
) ∈ τ for all p ∈ P , so τ1 ⊂ τ .

On the other hand, if W ∈ B, then p = µW and

V (p, 1) = {x : µW (x) < 1}
= W.

Thus, W ∈ B implies W ∈ τ1, and so τ ⊂ τ1 and the claim is proven.

11.5.3 Remark. It is natural to wonder why such constructs should be necessary. The following
example describes an application which supports what are known as ”Dirichlet problems”, of
interest in PDEs and harmonics.

11.5.4 Example. Consider a set Ω, open in Rd; by normality of Rd, there exists a nested sequence
of compact sets K1 ⊂ K2 ⊂ · · · and a nested sequence of open sets U1 ⊂ U2 ⊂ · · · such that
Kj ⊂ Uj ⊂ Kj+1 for j ∈ N with the property that

⋃∞
1 Kj = Ω. Let C(Ω) be the space of

all continuous functions on Ω. Since f ∈ C(Ω) can diverge, the ”sup norm” ‖ · ‖∞ cannot be
defined on all of C(Ω).
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Instead, we let pj(f) = sup{|f(x)| : x ∈ Kj}; then each pj is a seminorm and p1 ≤ p2 ≤ · · · .
We get Vn := {f ∈ C(Ω) : pn(f) < 1/n} forms a local base. By the topology induced by the
seminorms, C(Ω) becomes a locally convex topological vector space. However–and this is where
part (c) in Theorem 11.5.1 becomes important–each U ∈ U contains V := {f ∈ C(Ω) :
pN(f) < 1/m}, N,m ∈ N, but then we can choose for any L > 0, N ′ > N a function f ∈ V
with max |f |KN′ | > L, so pN ′ is not bounded on V .

We see, then that there is no chance of defining a norm on C(Ω) with the structure of a
topological vector space. This sentiment is made rigorous in the statement of Corollary 11.5.7.

11.5.5 Theorem. A topological vector space is normable if and only if 0 has a convex bounded
neighborhood.

Proof. If τ comes from a norm, then B1(0) = {x ∈ X : ‖x‖ < 1} gives a desired convex
bounded neighborhood; this follows from the fact that if V is an open neighborhood of 0, there
exists ε > 0 such that εB1(0) ⊂ V , so B1(0) ⊂ 1

ε
V .

Conversely, let V be a convex bounded neighborhood of 0. We know there exists a convex,
balanced open neighborhood U of 0 in V . Let, for x ∈ X, ‖x‖ = µU(x); by virtue of U being
balanced and convex, µU is a seminorm. Since U is bounded, (rU)r>0 is a local base. For nonzero
x, there exists q > 0 such that x ∈ qU , and so ‖x‖ ≥ r. Since µU is a seminorm and ‖x‖ > 0
for all nonzero x ∈ X, ‖ · ‖ is a norm.

11.5.6 Remark. We have, then, that {Br(0)}r>0 giving a local base actually characterizes the
topology, so the norm topology is identical to the original topology on X.

11.5.7 Corollary. Since C(Ω) does not have a bounded neighborhood of 0, it is not normable.
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