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1 Last time

Locally convex TVS as spaces whose topology is induced by a family of seminorms.

2 Warm-up

In a TVS, given V ∈ U there is C ∈ U s.t. C ⊂ V and C = C.

Proof. We know by continuity of addition at (0, 0) that, there is a W ∈ U with W +W ⊂ V .
We also know that,W = ∩

Y ∈U
(W+Y ). So, by choosing Y = W , we haveW ⊂ W+W ⊂ V .

3 Metrization

3.0.1 Question. When does the topology of a TVS come from a metric?
We have seen that in a TVS which comes from a metric, we have a countable local base, i.e.

(B1/n(0))n∈N. The existence of such a local base is also sufficient to obtain τ from a metric.

3.0.2 Theorem. Let X be a TVS with a countable local base. Then, there is a metric d s.t.

a© Every open set in τ is the union of open balls w.r.t. d.

b© Each open Br(0), r > 0, is balanced,

c© d is translation invariant.

d© If X is locally convex, then d can be chosen so that all Br(0) are convex.

Proof. Consider a countable local base B′. Let B be a countable local base s.t. B = (Vn)n∈N
with each Vn balanced and Vn+1 + Vn+1 + Vn+1 + Vn+1 ⊂ Vn (using continuity of addition).
We then have for all n, k ∈ N
Vn+1 + Vn+2 + ...+ Vn+k ⊂ Vn because Vn+k−1 + Vn+k ⊂ Vn+k−1 + Vn+k−1 and

Vn+k−2 + Vn+k−1 + Vn+k ⊂ Vn+k−2 + Vn+k−1 + Vn+k−1

⊂ Vn+k−2 + Vn+k−2 + Vn+k−2

⊂ Vn+k−3
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We can iteratively remove tail terms and end up with

Vn+1 + Vn+2 + Vn+2 + Vn+2 ⊂ Vn+1 + Vn+1 ⊂ Vn

Consider the dyadic rationals D = {
n∑
j=1

cj
2j
, cj ∈ {0, 1}, n ∈ N} and let

φ : D ∪ [1,∞]→ P (X)

φ(r) =

{
X r ≥ 1

c1(r)V1 + c2(r)V2 + ...+ cn(r)Vn, r ∈ D

From the construction of (Vn)n∈N,

φ(

n2∑
j=n1

cj
2j
) =

n2∑
j=n1

cjVj ⊂ Vn1−1.

Further, let f : X → R
f(x) = inf{r : x ∈ φ(r)}

and let d(x, y) = f(y − x).

We first consider properties of φ. For r, s ∈ D, we claim that φ(r) + φ(s) ⊂ φ(r + s).

(i) If r + s ≥ 1 then the RHS gives φ(r + s) = X, and there is nothing to show.

(ii) Next, let r + s ∈ D.

(Case I) cn(r) + cn(s) = cn(r + s) for all n. Then

φ(r + s) =
N∑
j=1

cj(r + s)Vj

=
N∑
j=1

cj(r)Vj +
N∑
j=1

cj(s)Vj

=φ(r) + φ(s)

(Case II) There is an n ∈ N s.t. cn(r) + cn(s) 6= cn(r + s). Let N be the smallest index for
which this occurs, then cN(r) = cN(s) = 0, and cN(r + s) = 1. Consequently,

φ(r) = c1(r)V1 + c2(r)V2 + ...+ cN−1(r)VN−1 + 0.VN

+ cN+1(r)VN+1 + cN+2(r)VN+2 + cN+3(r)VN+3 + ...

⊂ c1(r)V1 + ...+ cN−1(r)VN−1 + VN+1 + VN+1
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and similarly
φ(s) ⊂ c1(s)V1 + ...+ cN−1(s)VN−1 + VN+1 + VN+1 Hence,

φ(r) + φ(s) ⊂ c1(r + s)V1 + ...+ cN−1(r + s)VN−1 + VN+1 + VN+1 + VN+1 + VN+1

⊂ c1(r + s)V1 + ...+ cN−1(r + s)VN−1 + cN(r + s)︸ ︷︷ ︸
1

VN

⊂ φ(r + s)

Next, we observe that for r ∈ D ∪ [1,∞), 0 ∈ φ(r), because φ(r) contains at least
one neighborhood of 0. Moreover, {φ(r) : r ∈ D} is totally ordered by set inclusion,
because if r < t, then φ(r) ⊂ φ(r) + φ(t− r) ⊂ φ(t). From the definition of f , this
implies for all x, y ∈ X, f(x+ y) ≤ f(x) + f(y), as we see below:

From the range of f being [0, 1], assume RHS � 1:

Fix ε > 0, then there are r, s ∈ D with f(x) < r, f(y) < s and r+s < f(x)+f(y)+ε.
Ordering implies x ∈ φ(r), y ∈ φ(s) and therefore (x+ y) ∈ φ(r) + φ(s) ⊂ φ(r+ s).
Therefore f(x + y) ≤ r + s < f(x) + f(y) + ε This is true for any ε > 0, so
f(x+ y) ≤ f(x) + f(y).

Next, by balancedness of each Vj, f(x) = f(−x), f(0) = 0, and f(x) > 0 for x 6= 0.

This results from each φ(r) being balanced, and f(0) = 0 because 0 ∈ φ(r) for each
r ∈ D, and if x 6= 0, then there is VN with x 6∈ VN (since every TVS is a Hausdorff
space, so we can separate x from 0 by two disjoint open neighborhoods), since by
construction Vk ⊃ VN for all k ≤ N therefore, there is s s.t. x 6∈ φ(r) for all r < s,
and so by definition f(x)  0.

We conclude that d(x, y) = f(x− y) defines a (translationally) invariant metric. To
see that d is compatible with τ , consider

Bδ(0) = {x : f(x) < δ}
= (by total ordering)
= ∪

r<δ
r∈D

φ(r)

Thus, B 1
2n
(0) is a local base.

If each Vn is convex, so is each φ(r) and hence B 1
2n
(0)

3



3.0.3 Theorem. Suppose that (X, d1) and (Y, d2) are metric spaces, and (X, d1) is complete.
If E is closed in X, f : E → Y is continuous, and

d2(f(x
′), f(x′′)) ≥ d1(x

′, x′′) (*)

for all x′, x′′ ∈ E, then f(E) is closed.

Proof. Pick y ∈ f(E). There exist points xn ∈ E so that y = lim f(xn). Thus {f(xn)} is
Cauchy in Y . Our hypothesis (∗) implies therefore that {xn} is Cauchy in X. Being a closed
subset of a complete metric space, E is complete; Hence there exists x = limxn in E. Since f
is continuous, f(x) = lim f(xn) = y.

Thus y ∈ f(E)

3.0.4 Theorem. (a) If d is a translation-invariant metric on a v.s. X, then

d(nx, 0) ≤ nd(x, 0)

(b) If {xn} is a sequence in a metrizable t.v.s. X and if xn → 0 as n → ∞, then there are
positive scalars γn s.t. γn →∞ and γnxn → 0.

Proof. Statement (a) follows from triangle inequality plus translation invariance of the metric

d(0, nx) ≤ d(0, x) + d(x, 2x) + d(2x, 3x) + ...+ d((n− 1)x, nx)

≤
n∑
k=1

d(kx, (k − 1)x)

= d(x, 0) + d(x, 0) + d(x, 0) + ...+ d(x, 0)︸ ︷︷ ︸
n_times

= nd(x, 0)

To prove (b), let d be a metric as in (a), compatible with the topology of X. Since d(xn, 0)→ 0,
there is an increasing sequence of positive integers nk such that d(xn, 0) < 1

k2
if n ≥ nk. Put{

γn = 1 if n < n1,

γn = k if nk ≤ n < nk+1,
for such n we have

d(γnxn, 0) = d(kxn, 0) ≤ kd(xn, 0) <
1
k
. Hence γnxn → 0 as n→∞.
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