Functional Analysis, Math 7320 Lecture Notes from October 25, 2016

taken by Kazem Safari

1 Last time

Locally convex TVS as spaces whose topology is induced by a family of seminorms.

2 Warm-up

In a TVS, given $V \in \mathcal{U}$ there is $C \in \mathcal{U}$ s.t. $C \subset V$ and $C=\bar{C}$.
Proof. We know by continuity of addition at $(0,0)$ that, there is a $W \in \mathcal{U}$ with $W+W \subset V$. We also know that, $\bar{W}=\bigcap_{Y \in \mathcal{U}}(W+Y)$. So, by choosing $Y=W$, we have $\bar{W} \subset W+W \subset V$.

3 Metrization

3.0.1 Question. When does the topology of a TVS come from a metric?

We have seen that in a TVS which comes from a metric, we have a countable local base, i.e. $\left(B_{1 / n}(0)\right)_{n \in \mathbb{N}}$. The existence of such a local base is also sufficient to obtain τ from a metric.
3.0.2 Theorem. Let X be a TVS with a countable local base. Then, there is a metric d s.t.
(a) Every open set in τ is the union of open balls w.r.t. d.
(b) Each open $B_{r}(0), r>0$, is balanced,
(c) d is translation invariant.
(d) If X is locally convex, then d can be chosen so that all $B_{r}(0)$ are convex.

Proof. Consider a countable local base B^{\prime}. Let B be a countable local base s.t. $B=\left(V_{n}\right)_{n \in \mathbb{N}}$ with each V_{n} balanced and $V_{n+1}+V_{n+1}+V_{n+1}+V_{n+1} \subset V_{n}$ (using continuity of addition). We then have for all $n, k \in \mathbb{N}$
$V_{n+1}+V_{n+2}+\ldots+V_{n+k} \subset V_{n}$ because $V_{n+k-1}+V_{n+k} \subset V_{n+k-1}+V_{n+k-1}$ and

$$
\begin{aligned}
V_{n+k-2}+V_{n+k-1}+V_{n+k} & \subset V_{n+k-2}+V_{n+k-1}+V_{n+k-1} \\
& \subset V_{n+k-2}+V_{n+k-2}+V_{n+k-2} \\
& \subset V_{n+k-3}
\end{aligned}
$$

We can iteratively remove tail terms and end up with

$$
V_{n+1}+V_{n+2}+V_{n+2}+V_{n+2} \subset V_{n+1}+V_{n+1} \subset V_{n}
$$

Consider the dyadic rationals $D=\left\{\sum_{j=1}^{n} \frac{c_{j}}{2^{j}}, c_{j} \in\{0,1\}, n \in \mathbb{N}\right\}$ and let $\phi: D \cup[1, \infty] \rightarrow P(X)$
$\phi(r)= \begin{cases}X & r \geq 1 \\ c_{1}(r) V_{1}+c_{2}(r) V_{2}+\ldots+c_{n}(r) V_{n}, & r \in D\end{cases}$
From the construction of $\left(V_{n}\right)_{n \in \mathbb{N}}$,

$$
\phi\left(\sum_{j=n_{1}}^{n_{2}} \frac{c_{j}}{2^{j}}\right)=\sum_{j=n_{1}}^{n_{2}} c_{j} V_{j} \subset V_{n_{1}-1} .
$$

Further, let $f: X \rightarrow \mathbb{R}$

$$
f(x)=\inf \{r: x \in \phi(r)\}
$$

and let $d(x, y)=f(y-x)$.
We first consider properties of ϕ. For $r, s \in D$, we claim that $\phi(r)+\phi(s) \subset \phi(r+s)$.
(i) If $r+s \geq 1$ then the $R H S$ gives $\phi(r+s)=X$, and there is nothing to show.
(ii) Next, let $r+s \in D$.
(Case I) $c_{n}(r)+c_{n}(s)=c_{n}(r+s)$ for all n. Then

$$
\begin{aligned}
\phi(r+s) & =\sum_{j=1}^{N} c_{j}(r+s) V_{j} \\
& =\sum_{j=1}^{N} c_{j}(r) V_{j}+\sum_{j=1}^{N} c_{j}(s) V_{j} \\
& =\phi(r)+\phi(s)
\end{aligned}
$$

(Case II) There is an $n \in \mathbb{N}$ s.t. $c_{n}(r)+c_{n}(s) \neq c_{n}(r+s)$. Let N be the smallest index for which this occurs, then $c_{N}(r)=c_{N}(s)=0$, and $c_{N}(r+s)=1$. Consequently,

$$
\begin{aligned}
\phi(r) & =c_{1}(r) V_{1}+c_{2}(r) V_{2}+\ldots+c_{N-1}(r) V_{N-1}+0 . V_{N} \\
& +c_{N+1}(r) V_{N+1}+c_{N+2}(r) V_{N+2}+c_{N+3}(r) V_{N+3}+\ldots \\
& \subset c_{1}(r) V_{1}+\ldots+c_{N-1}(r) V_{N-1}+V_{N+1}+V_{N+1}
\end{aligned}
$$

and similarly
$\phi(s) \subset c_{1}(s) V_{1}+\ldots+c_{N-1}(s) V_{N-1}+V_{N+1}+V_{N+1}$ Hence,

$$
\begin{aligned}
\phi(r)+\phi(s) & \subset c_{1}(r+s) V_{1}+\ldots+c_{N-1}(r+s) V_{N-1}+V_{N+1}+V_{N+1}+V_{N+1}+V_{N+1} \\
& \subset c_{1}(r+s) V_{1}+\ldots+c_{N-1}(r+s) V_{N-1}+\underbrace{c_{N}(r+s)}_{1} V_{N} \\
& \subset \phi(r+s)
\end{aligned}
$$

Next, we observe that for $r \in D \cup[1, \infty), 0 \in \phi(r)$, because $\phi(r)$ contains at least one neighborhood of 0 . Moreover, $\{\phi(r): r \in D\}$ is totally ordered by set inclusion, because if $r<t$, then $\phi(r) \subset \phi(r)+\phi(t-r) \subset \phi(t)$. From the definition of f, this implies for all $x, y \in X, f(x+y) \leq f(x)+f(y)$, as we see below:

From the range of f being $[0,1]$, assume $R H S \lesseqgtr 1$:

Fix $\epsilon>0$, then there are $r, s \in D$ with $f(x)<r, f(y)<s$ and $r+s<f(x)+f(y)+\epsilon$. Ordering implies $x \in \phi(r), y \in \phi(s)$ and therefore $(x+y) \in \phi(r)+\phi(s) \subset \phi(r+s)$. Therefore $f(x+y) \leq r+s<f(x)+f(y)+\epsilon$ This is true for any $\epsilon>0$, so $f(x+y) \leq f(x)+f(y)$.

Next, by balancedness of each $V_{j}, f(x)=f(-x), f(0)=0$, and $f(x)>0$ for $x \neq 0$.
This results from each $\phi(r)$ being balanced, and $f(0)=0$ because $0 \in \phi(r)$ for each $r \in D$, and if $x \neq 0$, then there is V_{N} with $x \notin V_{N}$ (since every TVS is a Hausdorff space, so we can separate x from 0 by two disjoint open neighborhoods), since by construction $V_{k} \supset V_{N}$ for all $k \leq N$ therefore, there is s s.t. $x \notin \phi(r)$ for all $r<s$, and so by definition $f(x) \nsucceq 0$.

We conclude that $d(x, y)=f(x-y)$ defines a (translationally) invariant metric. To see that d is compatible with τ, consider

$$
\begin{aligned}
B_{\delta}(0) & =\{x: f(x)<\delta\} \\
& =(\text { by total ordering }) \\
& =\cup_{\substack{r<\delta \\
r \in D}} \phi(r)
\end{aligned}
$$

Thus, $B_{\frac{1}{2^{n}}}(0)$ is a local base.
If each V_{n} is convex, so is each $\phi(r)$ and hence $B_{\frac{1}{2^{n}}}(0)$
3.0.3 Theorem. Suppose that $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ are metric spaces, and $\left(X, d_{1}\right)$ is complete. If E is closed in $X, f: E \rightarrow Y$ is continuous, and

$$
\begin{equation*}
d_{2}\left(f\left(x^{\prime}\right), f\left(x^{\prime \prime}\right)\right) \geq d_{1}\left(x^{\prime}, x^{\prime \prime}\right) \tag{*}
\end{equation*}
$$

for all $x^{\prime}, x^{\prime \prime} \in E$, then $f(E)$ is closed.
Proof. Pick $y \in \overline{f(E)}$. There exist points $x_{n} \in E$ so that $y=\lim f\left(x_{n}\right)$. Thus $\left\{f\left(x_{n}\right)\right\}$ is Cauchy in Y. Our hypothesis $(*)$ implies therefore that $\left\{x_{n}\right\}$ is Cauchy in X. Being a closed subset of a complete metric space, E is complete; Hence there exists $x=\lim x_{n}$ in E. Since f is continuous, $f(x)=\lim f\left(x_{n}\right)=y$.

Thus $y \in f(E)$
3.0.4 Theorem. (a) If d is a translation-invariant metric on a v.s. X, then

$$
d(n x, 0) \leq n d(x, 0)
$$

(b) If $\left\{x_{n}\right\}$ is a sequence in a metrizable t.v.s. X and if $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, then there are positive scalars γ_{n} s.t. $\gamma_{n} \rightarrow \infty$ and $\gamma_{n} x_{n} \rightarrow 0$.

Proof. Statement (a) follows from triangle inequality plus translation invariance of the metric

$$
\begin{aligned}
d(0, n x) & \leq d(0, x)+d(x, 2 x)+d(2 x, 3 x)+\ldots+d((n-1) x, n x) \\
& \leq \sum_{k=1}^{n} d(k x,(k-1) x) \\
& =\underbrace{d(x, 0)+d(x, 0)+d(x, 0)+\ldots+d(x, 0)}_{n_{-} \text {times }} \\
& =n d(x, 0)
\end{aligned}
$$

To prove (b), let d be a metric as in (a), compatible with the topology of X. Since $d\left(x_{n}, 0\right) \rightarrow 0$, there is an increasing sequence of positive integers n_{k} such that $d\left(x_{n}, 0\right)<\frac{1}{k^{2}}$ if $n \geq n_{k}$. Put $\left\{\begin{array}{ll}\gamma_{n}=1 & \text { if } n<n_{1}, \\ \gamma_{n}=k & \text { if } n_{k} \leq n<n_{k+1},\end{array} \quad\right.$ for such n we have

$$
d\left(\gamma_{n} x_{n}, 0\right)=d\left(k x_{n}, 0\right) \leq k d\left(x_{n}, 0\right)<\frac{1}{k} \text {. Hence } \gamma_{n} x_{n} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

