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taken by Kazem Safari

1 Last time

Locally convex TVS as spaces whose topology is induced by a family of seminorms.

2 Warm-up

Ina TVS, given V € U thereisC eUd st. C CVand C =C.

Proof. We know by continuity of addition at (0,0) that, there isa W € U with W +W C V.
We also know that, W = YﬂM(W—i-Y). So, by choosingY = W, wehave W Cc W4+W Cc V. O
S

3 Metrization

3.0.1 Question. When does the topology of a TVS come from a metric?

We have seen that in a TVS which comes from a metric, we have a countable local base, i.e.
(B1/n(0))nen. The existence of such a local base is also sufficient to obtain 7 from a metric.

3.0.2 Theorem. Let X be a TVS with a countable local base. Then, there is a metric d s.t.

(@ Every open set in T is the union of open balls w.r.t. d.
® Each open B,(0), r > 0, is balanced,
(O d is translation invariant.

@ If X is locally convex, then d can be chosen so that all B,(0) are convex.

Proof. Consider a countable local base B’. Let B be a countable local base s.t. B = (V,,)nen
with each V,, balanced and V,,,1 + V.1 + Vi1 + Virr C V,, (using continuity of addition).
We then have for all n,k € N
Vg1 + Vogo + ... + Vg €V, because Vi1 + Vigr € Vigr—1 + Vigr—1 and
Vitk—2 + Vagr—1 + Vo C Voo + Vi1 + Vi
CVagk—2+ Vg2 + Vigpo
C Vitk-3



We can iteratively remove tail terms and end up with

Visi + Vg + Vo + Vg C Vo + Vi CV,

: : : ¢
Consider the dyadic rationals D = {Z 2—;., c; €{0,1},n € N} and let
j=1
¢:DUJ[l,00] = P(X)

6(r) X r>1
T _—
a(rVi+c(r)Va+ ...+ c(r)V,, reDbD

From the construction of (V},),en,
na Ca n2

oY 5= Vi C V.
j=n1 Jj=n

Further, let f: X — R
flz)=inf{r:z € o(r)}

and let d(z,y) = f(y — z).
We first consider properties of ¢. For r,s € D, we claim that ¢(r) + ¢(s) C ¢(r + s).

(i) If r+ s > 1 then the RHS gives ¢(r + s) = X, and there is nothing to show.
(ii)) Next, let r+s € D.

(Case I) cn(r) + cu(s) = cu(r + ) for all n. Then

r—i—s c]r—i-s

Mz

J=1

=z

(Case Il) Thereis an n € N s.t. ¢,(r) 4+ ¢,(s) # cu(r + s). Let N be the smallest index for
which this occurs, then cy (1) = cn(s) = 0, and ey (r + s) = 1. Consequently,

d(r) = c1(NVi + ca(r)Va + ... +en_1(r) V-1 + 0.V
+ N1 (M) Vst + engo (1) Ve + engs (1) Vs + ..
C 01(7’)‘/1 4+ ...+ CN—l(T)VN—l + VN+1 + VN-‘rl



and similarly
&(s) Cer(s)Vi+ ... + env—1(8)V_1 + Vi1 + Vv Hence,

o(r)+o(s) Ca(r+s)Vi+...+env_1(r+$) V-1 + Ve + Vasr + Vv + Vv
Calr+sVi+...+ena(r+s)Vg+en(r+s)Vy
1

C o(r+s)

Next, we observe that for r € D U [1,00), 0 € ¢(r), because ¢(r) contains at least
one neighborhood of 0. Moreover, {¢(r) : r € D} is totally ordered by set inclusion,
because if r < t, then ¢(r) C ¢(r) + ¢(t — 1) C ¢(t). From the definition of f, this
implies for all z,y € X, f(z +y) < f(z) + f(y), as we see below:

From the range of f being [0, 1], assume RHS < 1:

Fix € > 0, then there are ;s € D with f(x) < r, f(y) < sand r+s < f(z)+ f(y)+e.
Ordering implies = € ¢(r),y € ¢(s) and therefore (x +y) € ¢(r) + &(s) C d(r + s).
Therefore f(x +y) < r+s < f(x) + f(y) + € This is true for any € > 0, so

flx+y) < flx)+ fy).
Next, by balancedness of each Vj, f(z) = f(—x), f(0) =0, and f(z) > 0 for = # 0.

This results from each ¢(r) being balanced, and f(0) = 0 because 0 € ¢(r) for each
r € D, and if z # 0, then there is Viy with 2 &€ Viy (since every TVS is a Hausdorff
space, so we can separate = from 0 by two disjoint open neighborhoods), since by
construction Vi, D Vy for all k < N therefore, there is s s.t. « & ¢(r) for all r < s,
and so by definition f(z) > 0

We conclude that d(x,y) = f(x — y) defines a (translationally) invariant metric. To
see that d is compatible with 7, consider

Bs(0) = {z: f(z) <}

= (by total ordering)
= U o(r)

r<d
reD

Thus, B%(O) is a local base.

If each V,, is convex, so is each ¢(r) and hence BQ%(O)



3.0.3 Theorem. Suppose that (X,d,) and (Y, ds) are metric spaces, and (X, d,) is complete.
If £ is closed in X, f : E — Y is continuous, and

do(f(2), f(2")) = du(2', 2") (*)
for all ', 2" € E, then f(FE) is closed.

Proof. Pick y € f(E). There exist points x, € E so that y = lim f(x,). Thus {f(x,)} is
Cauchy in Y. Our hypothesis (x) implies therefore that {x,} is Cauchy in X. Being a closed
subset of a complete metric space, E is complete; Hence there exists x = limx,, in E. Since f
is continuous, f(z) = lim f(z,) =y.

Thus y € f(E) O

3.0.4 Theorem. (a) Ifd is a translation-invariant metric on a v.s. X, then
d(nz,0) < nd(zx,0)

(b) If {x,} is a sequence in a metrizable t.v.s. X and if x,, — 0 as n — oo, then there are
positive scalars ~,, s.t. v, — oo and vy,z, — 0.

Proof. Statement (a) follows from triangle inequality plus translation invariance of the metric
d(0,nz) < d(0,z) + d(x,2z) + d(2z,3x) + ... + d((n — 1)z, nx)

<> d(kz, (k- 1)x)

?:c, 0) +d(z,0) + d(x,0) + ... + d(z,0)

J/

k
d

-
n times

= nd(z,0)

To prove (b), let d be a metric as in (a), compatible with the topology of X. Since d(z,,0) — 0,
there is an increasing sequence of positive integers ny such that d(z,,0) < kig if n > nyg. Put

{%:1 if n < ny,

. for such n we have
Yo =k ifng <n < gy,

d(Ynxn,0) = d(kz,,0) < kd(x,,0) < % Hence ~,z, — 0 as n — ooc. O



