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3 Completeness

What is the Cauchy property in a topological vector space? Can we define “completeness” in
this setting? Although we do not necessarily have a metric space structure, we can still define
these concepts in a way that makes sense. Note that even though we can define a notion of
completeness, we do not explicitly use this definition in the following discussion.

3.0.1 Definition. We say that a sequence (x,,),en is Cauchy if for each U € U there exists an
N € N such that for all n,m >N, =, — z,, € U. A TVS X is called complete if every Cauchy
sequence converges to some r € X.

Similar to how null sets are considered “small” from the perspective of measure theory, we
introduce the Baire categories as a way to talk about topologically small/large sets in a general
topological space. We will then examine this concept in the TVS setting by determining when a
TVS is a Baire space, and formulate some powerful results using the language of category.

3.0.2 Definition. Let X be a topological space.

(a) A subset E C X is called nowhere dense if (E)° = (), or equivalently if X \ E is dense in
X.

(b) Asubset E C X is said to be of first category in X if E =~ | E, with each E,, nowhere
dense. Otherwise, E is said to be of second category.

(c) X is called a Baire space if for each sequence (U, ),en of open dense sets in X, (", U,
is dense in X.

3.0.3 Remark. Let X be a Baire space. For any countable collection (E,,),en of nowhere dense
subsets of X, let V,, = X \ E,, (note each V}, is dense in X). Then by definition of a Baire space
Noen Vo # 0, hence U, ey En € Upen Bn = X \ Nyen Vo © X In other words, Baire spaces
are of second category in themselves.

We next note some simple properties of category.
3.0.4 Lemma. Let X be a topological space.

1. If AC B C X, and B is of first category, so is A.
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2. If each E,, is of first category, so is |J,_, Ey.
3. IfE C X is closed and E° = (), then E is of first category.

Proof. For (1), note that if B is of first category then B = |,y En Where each E,, is nowhere
dense. Since A C B, we have A = |J,.y(AN E,), and clearly each AN E,, is nowhere dense
since it is a subset of E,,. Thus A is of first category.

For (2), suppose E,, is of first category for all n € N, so E, = {J,;oy En; with each E,, ;
nowhere dense. Then E = |J _\ F, is a countable union of nowhere dense sets, hence E is of
first category.

Lastly, for (3) note that if  is closed, then E = E. So () = E° = (E)°, hence E is nowhere
dense. O

neN

Our next lemma highlights one of the important characterizations of a Baire space, namely
that the countable union of closed sets with empty interior must itself have empty interior.

3.0.5 Lemma. Let X be a topological space. Then X is a Baire space if and only if for each
(Fn)nen with each F,, closed and (|J,,cn £n)° # 0, at least one F, has Fy, # 0.

Proof. Let X be a Baire space and (F},),en a sequence of closed sets with and suppose that for
each n € N, F? = (). Then for each n € N we have X \ F? = X, so X \ F,, = X. So each
X \ F, is open and dense in X. Since X is a Baire space, we know:

(X\F)=X = X\ |JF. =X

neN neN

— X\(%Fn)o:X
— (U Fn)o = 0.

neN

Conversely, assume that for each sequence (F,),en of closed sets with (|, oy F)° # 0, then
at least one F,, satisfies F)? # (). Let (U,)nen be a sequence of open dense sets in X. Then
F, =X \U,isclosed and F;? = 0, so (U,,cn Fn)° = 0, hence ((,,cy Un) = X. So X is a Baire
space. ]

We now give two sufficient conditions for a topological vector space to be a Baire space.
3.0.6 Theorem. A topological vector space X is a Baire space if:

1. X is locally compact.

2. The topology on X is induced by a complete metric.

Proof. Assume (V,,),en are open dense subsets of X. Let By # () be open, and for each n € N
choose B,,;1 # 0 such that B, ;1 C V11 N B,.

Suppose now that X is locally compact. Then we can choose each B, such that B, is
compact, so K = (0,cy Bn # 0 by compactness (and the face that the B,'s are nested). So
0 # K C(\,ey Vo thus X is a Baire space.



Next, suppose (2) is true. Then we can choose each B, to be a ball of radius 1/n. Let
x, € B, for all n € N. Then (z,),en is @ Cauchy sequence due to the fact the B,,'s are nested
with radii approaching zero. Thus (z,) converges to some = € X since the topology of X is
induced by a complete metric. So x is a limit point of ﬂneNB_n, hence x € ﬂneNB_n C Nhen V-
Thus X is a Baire space. O

Our next major use of the Baire categories is in formulating and proving a general version
of the Banach-Steinhaus theorem. To do so, we first define the notions of equicontinuity and
uniform boundedness for a family of maps, and show how they are related.

3.0.7 Definition. Let X and Y be topological vector spaces, and I' a collection of linear maps
from X to Y.

(a) We say that I is equicontinuous if for each V € UY, there exists a W € U~ such that for
al Ael, AW)cCV.

(b) We say that I' is uniformly bounded if for each bounded set ' C X there is a bounded set
F CY such that forall AeT, A(E) C F.

3.0.8 Proposition. Let X andY be topological vector spaces, and " an equicontinuous collection
of linear maps from X toY. Then T" is uniformly bounded.

Proof. Let E C X be bounded, and set F' = J, . A(£). We want to show that F' is bounded.
Consider any V € UY. By equicontinuity, there exists a W € UX such that for each A € T,
A(W) C V. By boundedness of 1V there exists some t, > 0 such that £ C tW for all t > .
Thus for any A € T', A(E) C A(tW) = tA(W) C tV for all t > ty. Thus A(FE) is bounded,
and moreover I’ C tV so I is bounded. [

Finally, we can show the Banach-Steinhaus theorem. This theorem says that if a large enough
(in terms of category) subset of a TVS X has bounded orbit under a family of continuous linear
maps, then the family is actually equicontinuous.

3.0.9 Theorem. (Banach-Steinhaus) Let X and Y be topological vector spaces, and I' a col-
lection of continuous linear maps from X to Y. If

B:={ze X :{Az: AeT} is bounded}
is of second category, then B = X and T is equicontinuous (and hence also uniformly bounded).

Proof. Let U,WW be balanced neighborhoods of 0 € Y such that U + U < W, and let
E ={Naer A"Y(U). Then E is closed by continuity of each A € I, and in particular we have
E={reX:Ax)eU forall AcT}.

For a given x € B, the set {Azx : A € T'} is bounded, so there exists some n € N with
{Az: AeT} CnU CnU. Hencex € nE. So B C |J;7, nE, and since B is of second category
it follows that nFE is of second category for at least one n € N. Since scalar multiplication is a
homeomorphism, this means E itself is of second category.

By E being closed and of second category, there exists an interior point z € E°, and so K —x
contains a neighborhood V' of 0. Note that V' C E — x satisfies:

AVYCAE) - ArcU-U=U+UcCW
for all A € T'. Thus I is equicontinuous, so I' is uniformly bounded which means B = X. O]



