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3 Completeness

What is the Cauchy property in a topological vector space? Can we define “completeness” in
this setting? Although we do not necessarily have a metric space structure, we can still define
these concepts in a way that makes sense. Note that even though we can define a notion of
completeness, we do not explicitly use this definition in the following discussion.

3.0.1 Definition. We say that a sequence (xn)n∈N is Cauchy if for each U ∈ U there exists an
N ∈ N such that for all n,m ≥ N, xn − xm ∈ U . A TVS X is called complete if every Cauchy
sequence converges to some x ∈ X.

Similar to how null sets are considered “small” from the perspective of measure theory, we
introduce the Baire categories as a way to talk about topologically small/large sets in a general
topological space. We will then examine this concept in the TVS setting by determining when a
TVS is a Baire space, and formulate some powerful results using the language of category.

3.0.2 Definition. Let X be a topological space.

(a) A subset E ⊂ X is called nowhere dense if (E)◦ = ∅, or equivalently if X \ E is dense in
X.

(b) A subset E ⊂ X is said to be of first category in X if E =
⋃∞

n=1 En with each En nowhere
dense. Otherwise, E is said to be of second category.

(c) X is called a Baire space if for each sequence (Un)n∈N of open dense sets in X,
⋂∞

n=1 Un

is dense in X.

3.0.3 Remark. Let X be a Baire space. For any countable collection (En)n∈N of nowhere dense
subsets of X, let Vn = X \En (note each Vn is dense in X). Then by definition of a Baire space⋂

n∈N Vn 6= ∅, hence
⋃

n∈N En ⊂
⋃

n∈N En = X \
⋂

n∈N Vn ( X. In other words, Baire spaces
are of second category in themselves.

We next note some simple properties of category.

3.0.4 Lemma. Let X be a topological space.

1. If A ⊂ B ⊂ X, and B is of first category, so is A.
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2. If each En is of first category, so is
⋃∞

n=1 En.

3. If E ⊂ X is closed and E◦ = ∅, then E is of first category.

Proof. For (1), note that if B is of first category then B =
⋃

n∈N En where each En is nowhere
dense. Since A ⊂ B, we have A =

⋃
n∈N(A ∩ En), and clearly each A ∩ En is nowhere dense

since it is a subset of En. Thus A is of first category.
For (2), suppose En is of first category for all n ∈ N, so En =

⋃
j∈NEn,j with each En,j

nowhere dense. Then E =
⋃

n∈N En is a countable union of nowhere dense sets, hence E is of
first category.

Lastly, for (3) note that if E is closed, then E = E. So ∅ = E◦ = (E)◦, hence E is nowhere
dense.

Our next lemma highlights one of the important characterizations of a Baire space, namely
that the countable union of closed sets with empty interior must itself have empty interior.

3.0.5 Lemma. Let X be a topological space. Then X is a Baire space if and only if for each
(Fn)n∈N with each Fn closed and (

⋃
n∈N Fn)◦ 6= ∅, at least one Fn has F ◦n 6= ∅.

Proof. Let X be a Baire space and (Fn)n∈N a sequence of closed sets with and suppose that for
each n ∈ N, F ◦n = ∅. Then for each n ∈ N we have X \ F ◦n = X, so X \ Fn = X. So each
X \ Fn is open and dense in X. Since X is a Baire space, we know:⋂

n∈N

(X \ Fn) = X =⇒ X \
⋃
n∈N

Fn = X

=⇒ X\
( ⋃

n∈N

Fn

)◦
= X

=⇒
( ⋃

n∈N

Fn

)◦
= ∅.

Conversely, assume that for each sequence (Fn)n∈N of closed sets with (
⋃

n∈N Fn)◦ 6= ∅, then
at least one Fn satisfies F ◦n 6= ∅. Let (Un)n∈N be a sequence of open dense sets in X. Then
Fn = X \Un is closed and F ◦n = ∅, so (

⋃
n∈N Fn)◦ = ∅, hence (

⋂
n∈N Un) = X. So X is a Baire

space.

We now give two sufficient conditions for a topological vector space to be a Baire space.

3.0.6 Theorem. A topological vector space X is a Baire space if:

1. X is locally compact.

2. The topology on X is induced by a complete metric.

Proof. Assume (Vn)n∈N are open dense subsets of X. Let B0 6= ∅ be open, and for each n ∈ N
choose Bn+1 6= ∅ such that Bn+1 ⊂ Vn+1 ∩Bn.

Suppose now that X is locally compact. Then we can choose each Bn such that Bn is
compact, so K =

⋂
n∈N Bn 6= ∅ by compactness (and the face that the Bn’s are nested). So

∅ 6= K ⊂
⋂

n∈N Vn, thus X is a Baire space.
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Next, suppose (2) is true. Then we can choose each Bn to be a ball of radius 1/n. Let
xn ∈ Bn for all n ∈ N. Then (xn)n∈N is a Cauchy sequence due to the fact the Bn’s are nested
with radii approaching zero. Thus (xn) converges to some x ∈ X since the topology of X is
induced by a complete metric. So x is a limit point of

⋂
n∈N Bn, hence x ∈

⋂
n∈N Bn ⊂

⋂
n∈N Vn.

Thus X is a Baire space.

Our next major use of the Baire categories is in formulating and proving a general version
of the Banach-Steinhaus theorem. To do so, we first define the notions of equicontinuity and
uniform boundedness for a family of maps, and show how they are related.

3.0.7 Definition. Let X and Y be topological vector spaces, and Γ a collection of linear maps
from X to Y .

(a) We say that Γ is equicontinuous if for each V ∈ UY , there exists a W ∈ UX such that for
all A ∈ Γ, A(W ) ⊂ V .

(b) We say that Γ is uniformly bounded if for each bounded set E ⊂ X there is a bounded set
F ⊂ Y such that for all A ∈ Γ, A(E) ⊂ F .

3.0.8 Proposition. Let X and Y be topological vector spaces, and Γ an equicontinuous collection
of linear maps from X to Y . Then Γ is uniformly bounded.

Proof. Let E ⊂ X be bounded, and set F =
⋃

A∈Γ A(E). We want to show that F is bounded.
Consider any V ∈ UY . By equicontinuity, there exists a W ∈ UX such that for each A ∈ Γ,
A(W ) ⊂ V . By boundedness of W there exists some t0 > 0 such that E ⊂ tW for all t > t0.
Thus for any A ∈ Γ, A(E) ⊂ A(tW ) = tA(W ) ⊂ tV for all t > t0. Thus A(E) is bounded,
and moreover F ⊂ tV so F is bounded.

Finally, we can show the Banach-Steinhaus theorem. This theorem says that if a large enough
(in terms of category) subset of a TVS X has bounded orbit under a family of continuous linear
maps, then the family is actually equicontinuous.

3.0.9 Theorem. (Banach-Steinhaus) Let X and Y be topological vector spaces, and Γ a col-
lection of continuous linear maps from X to Y . If

B :=
{
x ∈ X : {Ax : A ∈ Γ} is bounded

}
is of second category, then B = X and Γ is equicontinuous (and hence also uniformly bounded).

Proof. Let U,W be balanced neighborhoods of 0 ∈ Y such that U + U ⊂ W , and let
E =

⋂
A∈Γ A

−1(U). Then E is closed by continuity of each A ∈ Γ, and in particular we have

E = {x ∈ X : A(x) ∈ U for all A ∈ Γ}.
For a given x ∈ B, the set {Ax : A ∈ Γ} is bounded, so there exists some n ∈ N with

{Ax : A ∈ Γ} ⊂ nU ⊂ nU . Hence x ∈ nE. So B ⊂
⋃∞

n=1 nE, and since B is of second category
it follows that nE is of second category for at least one n ∈ N. Since scalar multiplication is a
homeomorphism, this means E itself is of second category.

By E being closed and of second category, there exists an interior point x ∈ E◦, and so E−x
contains a neighborhood V of 0. Note that V ⊂ E − x satisfies:

A(V ) ⊂ A(E)− Ax ⊂ U − U = U + U ⊂ W

for all A ∈ Γ. Thus Γ is equicontinuous, so Γ is uniformly bounded which means B = X.
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