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3.2.14 Corollary. Let X be F -spaces, Y be topological vector spaces and let Γ be a collection
of continuous linear maps from X to Y . If

Bx = {Ax : A ∈ Γ}

is bounded in Y , for every x ∈ X. Then Γ is equicontinuous and hence uniformly bounded.

Proof. here we have
B = {x ∈ X : Bx is bounded} = X

is of second category, so the preceding theorem applies.

we specialize further to norm space X, Y .

3.2.15 Theorem. (Banach-Steinhaus) Let Γ be a family of continuous linear mappings from a
Banach space X into a normed space Y . If for every x ∈ X,

sup
A∈Γ
‖Ax‖ <∞,

then there exists M > 0 s.t for all A ∈ Γ, x ∈ X, ‖x‖ ≤ 1, we have

|Ax| ≤M.

Hence
sup
A∈Γ
‖A‖ ≤M.

we investigate consequence of sequence of operators:
Let (An)n∈N be a sequence of continuous map from F -space to Topological vector space Y ,

and for each x ∈ X,
lim
n→∞

An(x) = A(x) exists.

Question: is A bounded?

3.2.16 Corollary. Let X be F -spaces, Y be topological vector spaces and let (An)n∈N be a
collection of continuous linear maps from X to Y . And suppose for each x ∈ X,

lim
n→∞

An(x) = A(x) exists.

Then A is linear and bounded.
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Proof. let x ∈ X, by the condition of (Anx)n∈N in Y , (Anx)n∈N is bounded in Y , so (An)n∈N is
equicontinuous by Banach-Steinhaus for F -space.

Thus if W ∈ UY , then there is V ∈ UX , s.t

An(V ) ⊂ W for each n ∈ N.

then {
y ∈ Y : y = lim

n→∞
An(x) for x ∈ V

}
⊂ W.

so
A(V ) ⊂ W.

Hence A is bounded.

3.2.17 Example. Consider c00, and let An : c00 → c00 be given by:

(Anx)m =

{
mxm if m ≤ n

0 if m > n
(1)

then
‖An‖ = n <∞.

So each An is bounded and for each x ∈ c00,

lim
n→∞

An(x) = A(x) exists.

But, choosing em = (0, 0 . . . , 0, 1, 0, . . .) where 1 is in the mth position, shows:

sup
‖x‖∞≤1,x∈c00

‖Ax‖ > sup
m∈N
|Aem| = sup

m∈∞
m =∞.

This is not a contradiction to uniform boundedness, because c00 is not complete. If we replace
c00 with c0, then however with

x = (n−1/2)n∈N ∈ c0,

we would have
(Ax)n = n1/2 →∞.

so
Ax /∈ c0,

that means we lose pointwise convention.

3.3 Open mapping theorem

we recall that if X, Y are Hausdorff, X is compact and f : X → Y onto continuous, then f is
open map. Now we define an analogous result for maps between F -space.

3.3.18 Theorem. Let A be a continuous map from F -space X to a TVS space Y which is
continuous, linear and A(X) is of second category in Y, then A(X) = Y , A is open and Y is an
F -space.
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To prove that A is open, we only need to show if it is open at 0, i.e an open neighborhood of
0 ∈ X is mapped to a open neighborhood of 0 ∈ Y . After proving this, we have for any balanced
V ∈ UX , there is a balanced W ∈ UY such that

W ⊂ A(V ) ⊂ A(X).

but by linearity, for any n ∈ N,
nW ⊂ nA(V ) ⊂ A(X).

Next, we want to show A(V2) has non-empty interior to get W ∈ UY with W ⊂ A(V1).
Next,

A(X) = A(
∞⋃
k=1

kV2) =
∞⋃
k=1

(kA(V2)).

So one of kA(V2) is of second category, but scaling with Mk is a homeomorphism, so A(V2) is
of second category, so A(V2).

We still need to show A(V1) ⊂ A(V ) :
Repeating the nested argument with Vn instead of V1, we have that A(Vn+1) has a non-empty

interier, so if y1 ∈ A(V1), then given yn ∈ A(Vn), we see

(yn − A(Vn+1)) ∩ A(Vn) 6= ∅,

and
(yn − A(Vn+1)) ∩ A(Vn) 6= ∅.

Thus, there exists xn ∈ Vn with
Axn ∈ yn − A(Vn+1).

We can choose
yn+1 = yn − Axn,

so
yn+1 ∈ A(Vn+1).

From d(xn, 0) < 2−nr, partial sums
∑n

j=1 xj form a Cauchy sequence:

d(
n∑

j=1

xj,

m∑
j=1

xj) = d(
m∑

j=n

xj, 0) <
m∑

j=n

2−jr → 0,

which converges by completeness to some x ∈ X.
Next,

m∑
n=1

Axn =
m∑

n=1

(yn − yn+1) = y1 − ym+1 → y1.

So we have
y1 = Ax ∈ A(V ).

Finally we want to show that Y is a F -space.
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