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3.2.14 Corollary. Let X be F-spaces, Y be topological vector spaces and let I be a collection
of continuous linear maps from X to Y. If

B, ={Ax: AeT}
is bounded in'Y', for every x € X. Then I" is equicontinuous and hence uniformly bounded.

Proof. here we have
B={x€ X : B, is bounded} = X

is of second category, so the preceding theorem applies. O]
we specialize further to norm space X,Y.

3.2.15 Theorem. (Banach-Steinhaus) Let I be a family of continuous linear mappings from a
Banach space X into a normed space Y. If for every v € X,

sup || Az[| < oo,
Ael

then there exists M > 0 s.t for all A€ ',z € X, ||z|| < 1, we have
|Az| < M.

Hence
sup ||Al| < M.
Aer

we investigate consequence of sequence of operators:
Let (A, )nen be a sequence of continuous map from F-space to Topological vector space Y,
and for each z € X,
lim A, (z) = A(x) exists.

Question: is A bounded?

3.2.16 Corollary. Let X be F-spaces, Y be topological vector spaces and let (A,),en be a
collection of continuous linear maps from X to Y. And suppose for each x € X,

lim A, (x) = A(z) exists.

n—oo

Then A is linear and bounded.



Proof. let x € X, by the condition of (A,2)nen in Y, (A,2)nen is bounded in Y, so (A,)nen is
equicontinuous by Banach-Steinhaus for F-space.
Thus if W € UY, then there is V € U, st

A, (V) C W for each n € N.

then
{yEY:y: lim A,(z) forxGV} cW.
n—oo
SO
AV)CW.
Hence A is bounded. O]

3.2.17 Example. Consider cqg, and let A, : coo — coo be given by:

ma ifm<n
Apx)m = " - 1
(Anz) {O if m>n (1)

then
| ALl = n < oc.

So each A,, is bounded and for each = € ¢,

lim A,(z) = A(x) exists.

n—oo

But, choosing e,, = (0,0...,0,1,0,...) where 1 is in the mth position, shows:

sup  ||Az| > sup |Ae,,| = sup m = oo.
[lz[loo <1,x€co0 meN meoo

This is not a contradiction to uniform boundedness, because cyg is not complete. If we replace
Coo With ¢y, then however with
~1/2
Tr = (n / )nEN S Co,

we would have
(Azx), =n? = co.

so
Az ¢ co,

that means we lose pointwise convention.

3.3 Open mapping theorem

we recall that if X,Y are Hausdorff, X is compact and f : X — Y onto continuous, then f is
open map. Now we define an analogous result for maps between F-space.

3.3.18 Theorem. Let A be a continuous map from F-space X to a TVS space Y which is
continuous, linear and A(X) is of second category in Y, then A(X) =Y, A is open and Y is an
F'-space.



To prove that A is open, we only need to show if it is open at 0, i.e an open neighborhood of
0 € X is mapped to a open neighborhood of 0 € Y. After proving this, we have for any balanced
V € U, there is a balanced W € UY such that

W cC A(V) C A(X).
but by linearity, for any n € N,
nW C nA(V) C A(X).
Next, we want to show A(V3) has non-empty interior to get W € UY with W C A(V}).

Next,
= A(|J k) = U (kA(Vz))
k=1 k=1

So one of kA(V4) is of second category, but scaling with M, is a homeomorphism, so A(V3) is
of second category, so A(V5).

We still need to show A(V}) C A(V):

Repeating the nested argument with V, instead of V}, we have that A(VnH) has a non-empty
interier, so if y; € A(V4), then given y,, € A(V},), we see

(yn - A(Vn+1>> N A(Vn) #+ @,

and

(Y — A(Vag)) NA(V,,) # 0.
Thus, there exists x,, € V,, with

Amn € Yn — A(Vn+1)
We can choose
Yn+1 = Yn — Axny

so
Yn+1 € A(Viy1).

From d(z,,0) < 27"r, partial sums 3°7 | x; form a Cauchy sequence:

d(i xj, ixj) = d(ixj,O) < iQ_jT — 0,
7j=1 7=1 j=n j=n

which converges by completeness to some x € X.
Next,

ZA:L’n = Z — Ynt1) = Y1 — Ymt1 — Y1

n=1

So we have
=Azr € A(V).

Finally we want to show that Y is a F'-space.



