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3.0.10 Corollary. Let Γ be the set of linear maps from an F -space X to a topological vector
space Y and let Bx = {Ax : A ∈ Γ} be bounded for all x ∈ X. Then Γ is equicontinuous and
uniformly bounded.

Proof. X is of the second category since it is an F -space, and X = {x ∈ X : Bx is bounded}.
Therefore, by the Banach-Steinhaus theorem, it is the case that Γ is equicontinuous and thus
uniformly bounded.

We specialize to normed spaces.

3.0.11 Theorem (Banach-Steinhaus). Let Γ be the set of continuous, linear maps from a Banach
space X to a normed space Y . If supA∈Γ ‖Ax‖Y < ∞ for all x ∈ X, then there is an M ≥ 0
such that ‖Ax‖Y ≤M for all A ∈ Γ and all x ∈ X with ‖x‖X ≤ 1.

Proof. Let Xn = {x ∈ X : supA∈Γ ‖Ax‖Y ≤ n}. Then X =
⋃

n∈N Xn. Since X is a nonempty,
complete metric space, by the Baire category theorem, there is an m ∈ N such that Xm has
nonempty interior, i.e., there is an x0 ∈ Xm and an ε > 0 such that

Bε (x0) = {x ∈ X : ‖x− x0‖X ≤ ε} ⊆ Xm.

Let A ∈ Γ and let y ∈ X with ‖y‖X ≤ 1. Then

‖Ay‖Y =
1

ε
‖A (x0 + εy)− Ax0‖Y

≤ 1

ε
(‖A (x0 + εy)‖Y + ‖Ax0‖Y )

≤ 1

ε
(m + m) .

Letting M = 2ε−1m yields the desired result.

We investigate consequences for sequences of operators.

3.0.12 Corollary. Let (An)n∈N be a sequence of continuous, linear maps from an F -space X to
a topological vector space Y . If limn→∞Anx = Ax exists for all x ∈ X, then A is linear and
bounded.
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Proof. Let x ∈ X. Then {Anx} is bounded since (Anx)n∈N converges, which implies that
(An)n∈N is equicontinuous, i.e., if W ∈ UY , then there is a V ∈ UX such that AnV ⊆ W for

each n, which implies that {y ∈ Y : y = limn→∞Anx for some x ∈ V } ⊆ W , which implies that
AV ⊆ W , which implies that A is bounded and continuous.

3.0.13 Example. Define An : c00 → c00 by

(Anx)m =

{
mxm m ≤ n,

0 m > n,

where c00 is the set of all sequences that are eventually zero. Then ‖An‖op = n < ∞,
which implies that each An is bounded. Moreover, for each x ∈ c00, it is the case that
Ax = limn→∞Anx exists since limn→∞Anx = (x1, 2x2, . . . ,mxm, 0, 0, . . . ) ∈ c00. However,
letting em = (0, 0, . . . , 0, 1, 0, 0, . . . ), where the 1 is at the m-th position, yields that

sup
x∈c00
‖x‖∞≤1

‖Ax‖∞ ≥ sup
m∈N
‖Aem‖∞ = sup

m∈N
m =∞.

This does not contradict uniform boundedness since c00 is not complete: to see that c00 is not
complete, let

an =

(
1,

1√
2
, . . . ,

1√
n
, 0, 0, . . .

)
∈ c00.

Then (an)n∈N is Cauchy since for every ε > 0, choosing N ∈ N such that 1/
√
N < ε yields that

‖ai − aj‖∞ =
1√
j + 1

< ε

whenever i, j ≥ N , where, without loss of generality, i > j. However, limn→∞ an /∈ c00.
Moreover, enlarging c00 to `∞ yields that a = limn→∞ an ∈ `∞ but Aa /∈ `∞ since (Aa)m =

√
m,

which implies that ‖Aa‖∞ =∞, i.e., we lose point-wise convergence.

3.1 The Open Mapping Theorem

If X and Y are Hausdorff topological spaces, X is compact, and f : X → Y is continuous and
surjective, then f is open.

Due to compactness, this implies that we get open maps on locally-compact topological vector
spaces, which are finite dimensional and thus uninteresting for our purposes.

Therefore, we derive an analogous result.

3.1.14 Theorem. If A : X → Y is a continuous, linear map from an F -space X to a topological
vector space Y and AX is of the second category, then AX = Y , A is open, and Y is an F -space.

2



Proof. Assume that A is open and let V ∈ UX be balanced. Then there is a balanced W ∈ UY

such that AX ⊇ AV ⊇ W . By linearity of A, it is the case that AX ⊇ A (nV ) ⊇ nW for all
n ∈ N. Therefore,

AX ⊇
∞⋃
n=1

(nW ) = Y.

Moreover, we have that nW ⊇ (nW )◦ = nW ◦ 6= ∅, which implies that Y is of the second
category.

To see that A is open, let d be an invariant metric on X that induces the topology of X, let
V0 = Br (0) ⊆ V , and define Vn = B2−nr (0). By the triangle inequality, V1 ⊇ V2 − V2, which
implies that AV1 ⊇ AV2 − AV2 ⊇ AV2 − AV2. Therefore,

AX = A

(
∞⋃
k=1

(kV2)

)
=
∞⋃
k=1

(kAV2) ,

which implies that one of the kAV2 is of the second category. Since scaling by k is a home-
omorphism, it is the case that AV2 is of the second category, which implies that AV2 has
nonempty interior. Repeating the nested argument with Vn instead of V1 yields that AVn+1

has nonempty interior. Let y1 ∈ AV1. Then yn ∈ AVn yields that
(
yn − AVn+1

)
∩ AVn 6= ∅

and (yn − AVn+1) ∩ AVn 6= ∅. So there is an xn ∈ Vn such that Axn ∈
(
yn − AVn+1

)
. Let

yn+1 = yn − Axn so that yn ∈ AVn+1. From d (xn, 0) < 2−nr, we see that the partial sums∑n
k=1 xk form a Cauchy sequence, which converges by completeness:

m∑
n=1

Axn =
m∑

n=1

(yn − yn+1) = y1 − ym+1
m→∞−−−→ 0.

Hence, y1 = Ax ∈ AV .
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