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3.0.10 Corollary. Let I' be the set of linear maps from an F-space X to a topological vector
space Y and let B, = {Ax : A € T'} be bounded for all x € X. Then T is equicontinuous and
uniformly bounded.

Proof. X is of the second category since it is an F-space, and X = {z € X : B, is bounded}.
Therefore, by the Banach-Steinhaus theorem, it is the case that I' is equicontinuous and thus
uniformly bounded. O

We specialize to normed spaces.

3.0.11 Theorem (Banach-Steinhaus). Let I' be the set of continuous, linear maps from a Banach
space X to a normed space Y. If sup . ||Az||y < oo for all x € X, then there is an M > 0
such that ||Az|ly, < M forall AT and all x € X with ||z, < 1.

Proof. Let X,, = {x € X : sup ¢r ||Az||y, <n}. Then X =, .y Xy Since X is a nonempty,
complete metric space, by the Baire category theorem, there is an m € N such that X, has
nonempty interior, i.e., there is an xg € X,, and an € > 0 such that

B. (xg) ={z € X : ||z — x|y < e} C Xy

Let AT and let y € X with ||y||, < 1. Then
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Letting M = 2¢~'m vyields the desired result. O]
We investigate consequences for sequences of operators.

3.0.12 Corollary. Let (A,), .y be a sequence of continuous, linear maps from an F-space X to
a topological vector space Y. If lim,,_.o, A,x = Ax exists for all x € X, then A is linear and
bounded.



Proof. Let x € X. Then {A,z} is bounded since (A,z),.y converges, which implies that
(An),cy Is equicontinuous, i.e., if W € YUY, then there is a V € U such that A,V C W for
each n, which implies that {y € Y : y = lim,,_,, A, for some € V} C W, which implies that
AV C W, which implies that A is bounded and continuous. O

3.0.13 Example. Define A,, : cog — coo by

(40),, = {m‘”m men

0 m >n,
where cqo is the set of all sequences that are eventually zero. Then [|A,|,, = n < oo,
which implies that each A, is bounded. Moreover, for each x € c¢qy, it is the case that
Az = lim,_,o, Apx exists since lim,, o Ay = (21,229, ..., m2p,0,0,...) € coo. However,

letting e,,, = (0,0,...,0,1,0,0,...), where the 1 is at the m-th position, yields that

sup |[|Az||,, > sup [[Aen ||, = supm = oo.
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This does not contradict uniform boundedness since ¢y is not complete: to see that cyy is not
complete, let

1 1
an=(1,—,...,—,0,0,... ) € coo.
( V2 ) o

Then (ay),,cy is Cauchy since for every ¢ > 0, choosing NV € N such that 1/V/N < ¢ yields that

whenever i,j > N, where, without loss of generality, i > j. However, lim, ., a, & cop.
Moreover, enlarging cgo to £*° yields that a = lim,,_,» a, € £>° but Aa ¢ (> since (Aa),, = v/m,
which implies that ||Aa|| = oo, i.e., we lose point-wise convergence.

3.1 The Open Mapping Theorem

If X and Y are Hausdorff topological spaces, X is compact, and f : X — Y is continuous and
surjective, then f is open.

Due to compactness, this implies that we get open maps on locally-compact topological vector
spaces, which are finite dimensional and thus uninteresting for our purposes.

Therefore, we derive an analogous result.

3.1.14 Theorem. If A: X — Y is a continuous, linear map from an F-space X to a topological
vector space Y and AX is of the second category, then AX =Y, A isopen, andY is an F-space.



Proof. Assume that A is open and let VV € U be balanced. Then there is a balanced W € U¥
such that AX D AV D W. By linearity of A, it is the case that AX O A(nV) O nW for all

n € N. Therefore,
D U (nW) =
n=1

Moreover, we have that nWW D (nW)° = nW?® # &, which implies that Y is of the second
category.

To see that A is open, let d be an invariant metric on X that induces the topology of X, let
Vo = B, (0) C V, and define V,, = By-n, (0). By the triangle inequality, V; D V4 — V4, which
implies that AV; D AV, — AV, O AV, — AV,. Therefore,

AX—A(O kV2> L:J (KAVS),

k=1

which implies that one of the kAV5 is of the second category. Since scaling by & is a home-
omorphism, it is the case that AV, is of the second category, which implies that AV has
nonempty interior. Repeating the nested argument with V,, instead of 1] yields that AV,
has nonempty interior. Let y; € AVi. Then y, € AV, yields that (y, — AV,41) N AV, # @
and (y, — AV,11) N AV, # @. So there is an z,, € V,, such that Az, € ( Yn AVn+1). Let
Yn+1 = Yn — Az, so that y, € AV, 1. From d(z,,0) < 27"r, we see that the partial sums
> i_, zx form a Cauchy sequence, which converges by completeness:

ZAIn = Z yn+1) =UY1 — Ym+1 m_>—oo> 0.
n=1
Hence, y; = Ax € AV O]



