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taken by Qianfan Bai

Last Time
e Equicontinuity and uniform boundedness
e Baire category and uniform boundedness in topological vector space

3.1.0 Corollary. Let I' be a collection of continuous linear maps from an F-space X into a
topological vector space Y, and if the set

B, ={Ax: AeT}
is bounded in'Y for every x € X, then I is equicontinuous and hence uniformly bounded.

Proof. This is an immediate consequence of the theorem given in previous notes, because an
F-space is of the second category. Here, we have that

B:={z€X:{Azx: AeT} is bounded},

ie. B :={r € X : B, isbounded} = X is of second category, so the preceding theorem
applies. O]

We specialize further to X, Y normed spaces.

3.1.1 Theorem. (Banach-Steinhaus) If X is a Banach space and Y is a normed space, and I'
is a family of continuous linear maps from X toY, then if for each v € X,

sup ||Az|| < oo,
Aer

then sup 4 || 4] < oo.

Proof. We know that X is of the second category, so from the previous theorem I is equicon-
tinuous, which implies that it is uniformly bounded. That is there exists an M > 0 such that the
(bounded) unit ball in X is mapped into a bounded set in Y/,

[Azl| < M, (Vee X, |[zf] <1)

So ||Az|| < M||z||, hence sup 4ep ||A]] < M < 00 O
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Next, we investigate consequences for sequences of operators.
Let (A, )nen be a sequence of continuous linear maps from an F-space to a topological vector
space Y, and for each x € X, lim,,_,o, A, (2) = A(x) exists.
3.1.2 Question. Is A bounded or continuous?
Banach Steinhaus theorem implies the equicontinuity of (A,,).en, hence A is bounded and con-
tinuous.

3.1.3 Corollary. Let (A, )nen be a sequence of continuous linear maps from an F-space to a
topological vector space Y, and suppose for all v € X, A(z) = lim,,_,o, A,(z) exists, then A is
bounded and continuous.

Proof. Let x € X. By the convergence of (A,2)nen in Y, {A,z},en is bounded in Y, so
(An)nen is equicontinuous by Banach-Steinhaus for F-spaces.

Thus, if W is a neighborhood of 0 in Y, then there is some neighborhood V of 0 in X with
A, (V) Cc W for all n € N, then

{yeY y= ILmAn(x)forxGV}CW,

so A(V) C W. Hence A is bounded and continuous.

O
3.1.4 Example. Consider the vector space
coo = {x € [*°, there is n € N such that z; =0 for all j > n}.
Let A, := coo — coo be given by
(AnZ)m = (21,229,...,mx,,,0,0,...).
That is for m < n, (A,x);, = mx,,, and for m > n, (A,x), = 0.
A, is bounded and continuous as for ||z|| < 1, we have
|Anz|| = ||(x1, 222, ... ,mz,0,0,...)] = sup |ma,| < nllz|| <n < oco.
For any x € cqg, there exists m € N such that © = (21,29, ...,2,,0,0,...). Hence for n > m,
A,x is constant and equal to (xy,2z5,...,mx,,0,0,...), which proves that (A,z) converges,

ie. Ax = lim,,_,oo A,z exists.
However, (A,,) is not uniformly bounded as we can see looking at the elements

em = (0,0,...,0,1,0,...,0,...)
which have all terms equal to 0 except the m-th one which is equal to 1, we have

lewll =1 and [ Anen] = 1/(0,0,...,0,m,0,...,0,...)| = m.

However, this does not contradict Banach-Steinhaus Theorem. Because c¢qq is not complete as

we can see considering the sequence (y,,,) of coo where y,, = (1,1,...,£,0,0,...). (ym) is a
Cauchy sequence as for 1 <p < q: ||y, — yp|| = ]ﬁ but (y,,) doesn’t converge in cqp.
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3.1.5 Remark. If we wanted to replace ¢y with ¢y := {(z;) en : lim; o ; = 0}, then, however,
with © = (\/%;)neN € ¢o, we would have

N

so Az ¢ ¢y. We loose pointwise convergence.

(Az), = Vn o = o0,

3.2 The Open Mapping Theorem

Let X, Y be two topological spaces. We say f : X — Y is open at point p € X if f(V') contains
a neighborhood of f(p) whenever V' is a neighborhood of p. We say that f is open if f(U) is
open in Y whenever U is open in X. A linear mapping between two topological vector spaces is
open iff it is open at the origin.

3.2.6 Lemma. Let X and Y be Banach spaces and A € B(X,Y') is onto, then A is an open
mapping.

Proof. It suffices to show that A(B;(0)) contains Bs(0) for some § > 0. We break its proof into

two parts:

First, A(B;(0)) contains B;(0) for some 6 > 0. Since A is onto,

Y = AB0)).

And since Y is complete, there exists k& such that A(B(0)) contains an open ball B, (y,) for
some o € Y and r > 0. Hence,

B,(0) = Br(yo) — yo C A(B(0)) — A(Bx(0)) € A(B2(0)).

Hence, B;s(0) C A(B% (0)) if we take § = ;.
Second, A(B%(O)) C A(B4(0)). Fix y; € A(B%(O)). Assume n > 1 and y, € A(BQ%(O))
has been chosen. From the above first step we have that for any r > 0, A(B,(0)) contains a
neighborhood of 0. Hence

(yn — A(B_1(0))) N A(B_1.(0))

on+1

is nonempty, and we can choose z,, € B%n(()) and y,+1 € A(B_1_(0)) such that

on+1
Yn — Yn+1 = Axn

Sum over n, we have

Y1 — Yn+1 = A(Z Tp)  — Aw
k=1

where z = 377 |z, € By(0) is well defined since ||lzy|| < 7. On the other hand, the continuity
of A implies y,, — 0 as n — oo, so we have y; = Az € A(B4(0).
0



Now we derive an analogous result for maps between [F'-spaces.

3.2.7 Theorem. Let A: X — Y be a map from an F-space X to a topological vector space
Y which is continuous and linear, and A(X) is of the second category in Y, then A(X) =Y, A
is open mapping and Y is an F-space.

Proof. To prove that A is open mapping, we only need to show it is open at 0, i.e. an open
neighborhood of 0 in X is mapped to an open neighborhood of 0 in Y. After proving this, we
have for any balanced V' € U4, there is a balanced W € UY such that

W cCA(V) C A(X),
but by linearity, for any n € N,

nW C A(nV) C A(X).

Taking the union over all n € N gives

Y = oW cAX).

neN

Also, we see that () # nW° = (nW)® C nW, so Y is of the second category. Thus, it remains
to show that A is open at 0.

Let d be an invariant metric on X that is compatible with the topology of X and let Vj = B,.(0) C
V and define V,, = By-»,(0). We will prove there is W € UY such that

W c A(Vy) C A(V).

From the triangle inequality, we get V; D V5, — V5, so

A(Vy) o A(V) — A(Va) D A(Va) — A(V).
Next, we want to show A(V3) has non-empty interior to get W € UY with W c A(V}).
Next, A(X) = A(U, kV2) = Ui, (EA(V2)) because V3 is a neighborhood of 0. At least one
kA(V5) is therefore of the second category in Y. Since y — ky is a homeomorphism of Y onto
Y, A(V4) is of the second category in Y. Its closure therefore has nonempty interior.
We still need to show A(V;) C A(V).
Repeating the nested argument with V,, instead of V;, we have that A(V,,.1) has a non-empty
interier, so if y; € A(V}), then given y, € A(V,,), we see

(yn - A(Vn-i-l)) N A(Vn) 7é @
and
(yn - A(Vn+1>> N A(Vn) 7& 0.

Thus, there exists x,, € V,, with
Axn € Yn — A<Vn+1)



We can choose

Yn+1 = Yn — Az,
so

Ynt1 € A(Vayr).

From d(x,,0) < 27"r, partial sums Z?Zl x; form a Cauchy sequence, which converges by
completeness to some = € X.

Next, > " Azy =37 (Yn — Ynt1) = Y1 — Ymt1 — 0 as m — oo.

So we have y; = Az € A(V). This gives A(V1) C A(V). Hence A is an open mapping.

Finally, we want to show that Y is an F-space. (See next lecture notes).
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