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• Equicontinuity and uniform boundedness

• Baire category and uniform boundedness in topological vector space

3.1.0 Corollary. Let Γ be a collection of continuous linear maps from an F-space X into a
topological vector space Y , and if the set

Bx = {Ax : A ∈ Γ}

is bounded in Y for every x ∈ X, then Γ is equicontinuous and hence uniformly bounded.

Proof. This is an immediate consequence of the theorem given in previous notes, because an
F-space is of the second category. Here, we have that

B :=
{
x ∈ X : {Ax : A ∈ Γ} is bounded

}
,

i.e. B := {x ∈ X : Bx is bounded} = X is of second category, so the preceding theorem
applies.

We specialize further to X, Y normed spaces.

3.1.1 Theorem. (Banach-Steinhaus) If X is a Banach space and Y is a normed space, and Γ
is a family of continuous linear maps from X to Y , then if for each x ∈ X,

sup
A∈Γ
‖Ax‖ <∞,

then supA∈Γ ‖A‖ <∞.

Proof. We know that X is of the second category, so from the previous theorem Γ is equicon-
tinuous, which implies that it is uniformly bounded. That is there exists an M ≥ 0 such that the
(bounded) unit ball in X is mapped into a bounded set in Y ,

‖Ax‖ ≤M, (∀x ∈ X, ‖x‖ ≤ 1)

So ‖Ax‖ ≤M‖x‖, hence supA∈Γ ‖A‖ ≤M <∞
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Next, we investigate consequences for sequences of operators.
Let (An)n∈N be a sequence of continuous linear maps from an F -space to a topological vector
space Y , and for each x ∈ X, limn→∞An(x) = A(x) exists.

3.1.2 Question. Is A bounded or continuous?
Banach Steinhaus theorem implies the equicontinuity of (An)n∈N, hence A is bounded and con-
tinuous.

3.1.3 Corollary. Let (An)n∈N be a sequence of continuous linear maps from an F -space to a
topological vector space Y , and suppose for all x ∈ X, A(x) = limn→∞An(x) exists, then A is
bounded and continuous.

Proof. Let x ∈ X. By the convergence of (Anx)n∈N in Y , {Anx}n∈N is bounded in Y , so
(An)n∈N is equicontinuous by Banach-Steinhaus for F -spaces.
Thus, if W is a neighborhood of 0 in Y, then there is some neighborhood V of 0 in X with
An(V ) ⊂ W for all n ∈ N, then

{y ∈ Y : y = lim
n→∞

An(x) for x ∈ V } ⊂ W,

so A(V ) ⊂ W . Hence A is bounded and continuous.

3.1.4 Example. Consider the vector space

c00 = {x ∈ l∞, there is n ∈ N such that xj = 0 for all j ≥ n}.

Let An := c00 → c00 be given by

(Anx)m = (x1, 2x2, . . . ,mxm, 0, 0, . . . ).

That is for m ≤ n, (Anx)m = mxm, and for m > n, (Anx)m = 0.
An is bounded and continuous as for ‖x‖ ≤ 1, we have

‖Anx‖ = ‖(x1, 2x2, . . . ,mxm, 0, 0, . . . )‖ = sup
1≤m≤n

|mxm| ≤ n‖x‖ ≤ n <∞.

For any x ∈ c00, there exists m ∈ N such that x = (x1, x2, . . . , xm, 0, 0, . . . ). Hence for n ≥ m,
Anx is constant and equal to (x1, 2x2, . . . ,mxm, 0, 0, . . . ), which proves that (Anx) converges,
i.e. Ax = limn→∞Anx exists.
However, (An) is not uniformly bounded as we can see looking at the elements

em = (0, 0, . . . , 0, 1, 0, . . . , 0, . . . )

which have all terms equal to 0 except the m-th one which is equal to 1, we have

‖em‖ = 1 and ‖Anem‖ = ‖(0, 0, . . . , 0,m, 0, . . . , 0, . . . )‖ = m.

However, this does not contradict Banach-Steinhaus Theorem. Because c00 is not complete as
we can see considering the sequence (ym) of c00 where ym = (1, 1

2
, . . . , 1

m
, 0, 0, . . . ). (ym) is a

Cauchy sequence as for 1 ≤ p < q : ‖yq − yp‖ = 1
p+1

but (ym) doesn’t converge in c00.
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3.1.5 Remark. If we wanted to replace c00 with c0 := {(xj)j∈N : limj→∞ xj = 0}, then, however,
with x = ( 1√

n
)n∈N ∈ c0, we would have

(Ax)n =
n√
n

=
√
n →∞,

so Ax /∈ c0. We loose pointwise convergence.

3.2 The Open Mapping Theorem

Let X, Y be two topological spaces. We say f : X → Y is open at point p ∈ X if f(V ) contains
a neighborhood of f(p) whenever V is a neighborhood of p. We say that f is open if f(U) is
open in Y whenever U is open in X. A linear mapping between two topological vector spaces is
open iff it is open at the origin.

3.2.6 Lemma. Let X and Y be Banach spaces and A ∈ B(X, Y ) is onto, then A is an open
mapping.

Proof. It suffices to show that A(B1(0)) contains Bδ(0) for some δ > 0. We break its proof into
two parts:
First, A(B 1

2
(0)) contains Bδ(0) for some δ > 0. Since A is onto,

Y =
∞⋃
k=1

A(Bk(0)).

And since Y is complete, there exists k such that A(Bk(0)) contains an open ball Br(y0) for
some y0 ∈ Y and r > 0. Hence,

Br(0) = Br(y0)− y0 ⊂ A(Bk(0))− A(Bk(0)) ⊂ A(B2k(0)).

Hence, Bδ(0) ⊂ A(B 1
2
(0)) if we take δ = r

4k
.

Second, A(B 1
2
(0)) ⊂ A(B1(0)). Fix y1 ∈ A(B 1

2
(0)). Assume n ≥ 1 and yn ∈ A(B 1

2n
(0))

has been chosen. From the above first step we have that for any r > 0, A(Br(0)) contains a
neighborhood of 0. Hence

(yn − A(B 1
2n+1

(0))) ∩ A(B 1
2n

(0))

is nonempty, and we can choose xn ∈ B 1
2n

(0) and yn+1 ∈ A(B 1
2n+1

(0)) such that

yn − yn+1 = Axn .

Sum over n, we have

y1 − yn+1 = A(
n∑
k=1

xk) → Ax

where x =
∑∞

k=1 xk ∈ B1(0) is well defined since ‖xk‖ < 1
k

. On the other hand, the continuity
of A implies yn → 0 as n→∞, so we have y1 = Ax ∈ A(B1(0).

3



Now we derive an analogous result for maps between F -spaces.

3.2.7 Theorem. Let A : X → Y be a map from an F -space X to a topological vector space
Y which is continuous and linear, and A(X) is of the second category in Y , then A(X) = Y , A
is open mapping and Y is an F -space.

Proof. To prove that A is open mapping, we only need to show it is open at 0, i.e. an open
neighborhood of 0 in X is mapped to an open neighborhood of 0 in Y . After proving this, we
have for any balanced V ∈ UX , there is a balanced W ∈ UY such that

W ⊂ A(V ) ⊂ A(X),

but by linearity, for any n ∈ N,
nW ⊂ A(nV ) ⊂ A(X).

Taking the union over all n ∈ N gives

Y =
⋃
n∈N

nW ⊂ A(X).

Also, we see that ∅ 6= nW 0 = (nW )0 ⊂ nW , so Y is of the second category. Thus, it remains
to show that A is open at 0.
Let d be an invariant metric on X that is compatible with the topology of X and let V0 = Br(0) ⊂
V and define Vn = B2−nr(0). We will prove there is W ∈ UY such that

W ⊂ A(V1) ⊂ A(V ).

From the triangle inequality, we get V1 ⊃ V2 − V2, so

A(V1) ⊃ A(V2)− A(V2) ⊃ A(V2)− A(V2).

Next, we want to show A(V2) has non-empty interior to get W ∈ UY with W ⊂ A(V1).
Next, A(X) = A(

⋃∞
k=1 kV2) =

⋃∞
k=1(kA(V2)) because V2 is a neighborhood of 0. At least one

kA(V2) is therefore of the second category in Y . Since y → ky is a homeomorphism of Y onto
Y , A(V2) is of the second category in Y. Its closure therefore has nonempty interior.
We still need to show A(V1) ⊂ A(V ).
Repeating the nested argument with Vn instead of V1, we have that A(Vn+1) has a non-empty
interier, so if y1 ∈ A(V1), then given yn ∈ A(Vn), we see

(yn − A(Vn+1)) ∩ A(Vn) 6= ∅

and
(yn − A(Vn+1)) ∩ A(Vn) 6= ∅.

Thus, there exists xn ∈ Vn with
Axn ∈ yn − A(Vn+1)
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We can choose
yn+1 = yn − Axn

so
yn+1 ∈ A(Vn+1).

From d(xn, 0) < 2−nr, partial sums
∑n

j=1 xj form a Cauchy sequence, which converges by
completeness to some x ∈ X.
Next,

∑m
n=1 Axn =

∑m
n=1(yn − yn+1) = y1 − ym+1 → 0 as m→∞.

So we have y1 = Ax ∈ A(V ). This gives A(V1) ⊂ A(V ). Hence A is an open mapping.
Finally, we want to show that Y is an F -space. (See next lecture notes).
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