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We study the open mapping theorem:

3.3.2 Theorem (Open Mapping Theorem). Let A be a map from F-space X to a topological
vector space Y which is continuous, linear and A(X) is second category of Y . Then, A(X) = Y ,
A is an open map, and Y is an F-space.

Last lecture, we proved that A is an open map. As a consequence, we obtain A(X) = Y
since the only open subspace of Y is Y itself. We still need to show that Y is F-space.

Proof (continue). If A is one to one, since A is open, A−1 is well defined and continuous.
Thus, A is homeomorphism from X to Y . Thus, Y is also F-space as same as X. Now, we
consider in the general case. From A being continuous linear map, N = A−1({0}) is a closed
subspace of X. Consider the quotient space X/N = {x + N : x ∈ X} with the quotient map
q : X → X/N . Then q is continuous and open. Define Ã : X/N → Y by Ã(x + N) = A(x)
(see the diagram below). Then Ã is one to one and onto. Moreover, A = Ã ◦ q. For an
open set U in Y , Ã−1(U) = {x + N : A(x) ∈ U} = {x + N : x ∈ A−1(U)} = q(A−1(U))
which is open in X/N by the continuity of A and openness of the qutient map. Thus, Ã is a
continuous bijection. Next, if E is open in X/N , by continuity of q , q−1(E) is open. Then,
Ã(E) = Ã(q(q−1(E))) = A(q−1(E)) is open since A is open. Thus, Ã is homeomorphism. Since
q preserves completeness and invariant property under translation of the metric, the quotient space
X/N is also an F-space. By Ã being a homeomorphism, Y is an F-space.

X Y

X/N

A

q
Â

3.3.3 Remark. In the previous proof, we used the properties of fact that if N is a closed subspace
of an F-space X, then the quotient space X/N is also an F-space. We provide more details
about quotient space.
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For a topological vector space X and a closed subspace of N of X, recall that [x] = {x+ y :
y ∈ N} is the coset of N containing x. Then,

X/N = {[x] : x ∈ X}

with the operation [x] + [y] = [x + y] and α[x] = [αx] for [x], [y] ∈ X/N and α ∈ R. This will
define the quotient vector space. Let q : X → X defined by q(x) = [x]. We call q the quotient
map. Then define the topology τN on X/N as follows:

τN = {U ⊆ X/N : q−1(U) is open in X}.

Then, τN will be a topology on X/N and makes X/N . The following are interesting facts about
the quotient space (Check [2], p31).

• τN makes X/N a topological vector space under the addition and multiplication as defined
above.

• The quotient map q : X → X/N is linear, continuous, and open.

• If B is a local base of X, then BN = {p(V ) : V ∈ B} is a local base of X/N .

• Local convexity, local boundedness, metrizability, and normability properties of X will be
inherited to X/N .

• X/N will be an F-space, or a Frechet space or a Banach space if X is.

Moreover, if d is an invariant metric on X. Define

ρ([x], [y]) = inf{d(x− y, z) : z ∈ N}.

Then, we obtain

• ρ is well defined, i.e, it is not depends on the choices of x, y,

• ρ is an invariant metric, and

• The topology generated by ρ is τN .

Now, we are going to use the facts we have listed above to show that if X is an F space, then
so is X/N .

Proof. Defining ρ as above, we have ρ is an invariant metric. We still need to show that ρ is
also complete. Let un be a Cauchy sequence in X/N . For ε = 1/2k and apply the definition of a
Cauchy sequence, we can inductively construct a subsequence unk

such that ρ(unk
, unk+1

) < 1/2k.
We will inductively choose xk ∈ uk so that d(xk, xk+1) < 1/2k. First, choose arbitrary x1 ∈ un1 .
After we have chosen xk ∈ uk, we will choose xk+1. We can write unk

= [xk] and unk+1
= [y]

for some y ∈ unk+1
. Since ρ(unk

, unk+1
) = inf{d(xk − y, z) : z ∈ N} < 1/2k, there is z ∈ N

such that d(xk − y, z) < 1/2k. By the invariant property, d(xk − y, z) = d(xk, y + z) < 1/2k.
Then, we choose xk+1 = y + z ∈ [y] = unk+1

. By this construction, for k < l, we have

d(xk, xl) < d(xk, xk+1) + ... + d(xl−1, xl) <
∑l−1

j=k 2j < 2/2k. This implies that xk is a Cauchy
sequence in X and thus it converges to some x ∈ X. Thus, unk

converges to q(x) by the
continuity of the quotient map q. Since a subsequence of a Cauchy sequence converges, it forces
the whole sequence converges to the same limit. This proved that ρ is a complete metric.
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The open mapping theorem can be applied to specific cases. First, we consider the case when
A is linear continuous bijection and both X and Y are F-spaces.

3.3.4 Corollary. If A : X → Y is a bijection continuous linear map between F-spaces X and Y ,
then A is homeomorphism.

Proof. From the statement, we have (i) X is an F-space X, (ii) A is continuous and linear
from X to a topological vector space Y , and (iii) A(X) = Y is an F-space and thus of the
second category in themselves by Baire’s theorem. As a consequence, the open mapping theorem
concludes A is an open map. Since A is bijective, A−1 is well defined. Since A is open, A−1

is continuous. In conclusion, A is continuous and has a continuous inverse. Therefore, A is
homeomorphism.

3.3.5 Remark. (i) From the proof of the previous corollary, we also have any continuous linear
map between F-spaces is always open.
(ii) If (X, τ1) and (X, τ2) are topological vector spaces which are both F-spaces. If τ1 and τ2 are
comparable, i.e, one is finer than the other, then both are equal. To prove this, with out loss
of generality, we assume that τ2 ⊂ τ1. Then, the identity map Id : (X, τ1) → (X, τ2) is linear
and continuous. By the corollary, Id is homeomorphism. Thus, τ1 = τ2. This suggests that any
F-space can not be compared to another. On the other hand, if (X, τ1) is an F-space and τ1 ( τ2
(or τ2 ( τ1), (X, τ2) can not be F-space.

More specifically, we consider consequences of the open mapping theorem on Banach spaces.

3.3.6 Remark. Let (X, ‖ · ‖X) and (Y, ‖ · ‖) be normed spaces. If A is a continuous linear map
from X to Y , there exists M > 0 such that ‖Ax‖Y ≤M‖x‖X for all x ∈ X.
3.3.7 Corollary. If X and Y are Banach spaces and A : X → Y is continuous linear bijection,
then there exist m,M > 0 with

m‖x‖X ≤ ‖Ax‖ ≤M‖x‖X .

Proof. Since A is linear and continuous, the imidiate consequence is that there is M > 0 such
that

‖Ax‖Y ≤M‖x‖X
for all x ∈ X. Since X is a Banach space, it is complete metric space and so F-space. Similarly,
since A is onto, A(X) = Y which is a Banach space. Thus, A(X) is F-space which also is of the
second category. Therefore, applying the open mapping theorem to the continuous linear map
A, we obtain A is an open map. Since A is one to one, A−1 is well defined and thus continuous
by the openess of A. Therefore, there is M̃ > 0 such that

‖A−1y‖X ≤ M̃‖y‖Y
for all y ∈ Y . Let x ∈ X. Since A is bijective, there is a unique y ∈ Y such that y = Ax and
x = A−1y = A−1Ax. Replacing y by Ax into the above inequality, we obtain

‖x‖X ≤ M̃‖Ax‖Y .

By choosing m = 1/M̃ , we conclude that

m‖x‖X ≤ ‖Ax‖Y ≤M‖x‖X
as we desire.
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3.3.8 Remark. (i) The previous theorem means norms on X and Y are equivalent.
(ii) Let ‖ · ‖1 and ‖ · ‖2 be norms on a vector space X which both are complete norms generating
the same topology. Let Id : X → X be the identity map. Then Id is a continuous linear
bijection. By replacing Ax = Ix = x to the previous corollary, we have that

m‖x‖2 ≤ ‖x‖1 ≤M‖x‖2.

On the other words, all norms in a Banach space X are equivalent.

3.4 Warm Up: Internal vs Interior

3.4.9 Definition. Let V be a vector space, S ⊆ V . A point x ∈ S is called an internal point if
for every y ∈ V , there is ε > 0 such that {x+ ry : |r| < ε} ⊆ S.

3.4.10 Remark. A set S ⊆ V for which 0 is an internal point is absorbing because for all y ∈ V ,
there is n ∈ N such that y/n ∈ S, i.e., V =

⋃∞
n=1 nS.

3.4.11 Remark. If 0 is an interior point of a subset S of a topological vector space X, then it has
a balanced open subset U such that 0 ∈ U ⊆ S. In addition, X =

⋃∞
n=1 nU. Let x ∈ X. Hence,

x ∈ nU for some n ∈ N. Thus, 1
n
x ∈ U. Since U is balanced, α

n
x ∈ U for all |α| < 1. Therefore,

an interior point is also an internal point. But, the converse is not true as the following examples.

3.4.12 Example. We provide some examples on R2.

Image of S1

1. In R2, for θ ∈ (0, π), let Aθ = (−θ/π, θ/π)(cos θ, sin θ). Define S1 = (
⋃
θ∈(0,π)Aθ) ∪

{(x, 0) : x ∈ (−1, 1)}. Then, 0 is an internal point of S1 but not interior point.

Image of S1

2. Let S2 = {(x, y) : y > x2} ∪ {(x, 0) : x ∈ R} ∪ {(x, y) : y < −x2}. Then 0 is an internal
point but not interior point of S2.
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3.4.13 Remark. In a finite dimensional topological vector space, interior points and internal points
in a convex set coincide (check [2]). Since a real or complex topological vector space of dimension
n is homeomorphic to Rn or Cn. It suffices to prove the statement in Rn and Cn. To get a
perspective about this statement, we consider in the case of R2. Let 0 be an internal point
of a convex set S ⊆ R2. Choose v1 = (1, 1) and v2 = (1,−1). Note that these two vector
form a basis of R2. Since 0 is an internal point of S, there are positive real numbers r1 and
r2 such that {αv1 : |α| < r1} ⊆ S and {βv2 : |β| < r2} ⊆ S. Choose r = min{r1, r2}/2.
Then rv1 = (r, r),−rv1 = (−r,−r), rv2 = (r,−r),−rv2 = (−r, r) ∈ S since | ± r| < r1
and | ± r| < r2. For any 0 ≤ t ≤ 1, t(r, r) + (1 − t)(−r, r) = ((2t − 1)r, r) ∈ S and
t(r,−r) + (1− t)(−r,−r) = ((2t− 1)r,−r) ∈ S by the convexity. Again, by convexity, for any
0 ≤ t̃ ≤ 0, t̃((2t− 1)r, r) + (1− t̃)((2t− 1)r,−r) = ((2t− 1)r, (2t̃− 1)r) ∈ S. For (x, y) ∈ R2

where |x| < r and y < |r|, choose t = (x/r+ 1)/2 and t̃ = (y/r+ 1)/2 which both are in [0, 1].
Thus, (x, y) = ((2t− 1)r, (2t̃− 1)r). Therefore, (0, 0) ∈ {(x, y) : |x| < r, |y| < r} ⊆ S which is
open. Therefore, 0 is an internal point. We can extend this idea to prove the statement for Rn

and Cn. For an internal point of S which is not 0, we can replace S by S − x.

3.5 The Closed Graph Theorem

3.5.14 Definition. Let f : X → Y . The graph of f is

Γ(f) = {(x, f(x) : x ∈ X} ⊂ X × Y.

3.5.15 Theorem. Let X is a topological space and Y is a Hausdorff space. If f : X → Y is
continuous, then the graph of f , Γ(f) is closed in the product topology.

Proof. Take Ω = X × Y \ Γ(f) and (x, y) ∈ Ω. Thus, y 6= f(x). By Hausdorff property of
Y , there exist disjoint open sets V,W such that f(x) ∈ V and y ∈ W . Since f is continuous,
f−1(V ) is open, and hence, f−1(V )×W is an open set in the product topology X×Y containing
(x, y). Moreover, if (a, b) ∈ f−1(V ) ×W , f(a) ∈ V and b ∈ W . Since V and W are disjoint,
f(a) 6= b, i.e., f−1(V )×W ⊆ Ω. Therefore, Ω is open; hence, Γ(f) = X × Y \Ω is closed.

Under certain assumptions, we can show the converse of this theorem.

3.5.16 Theorem. Let A : X → Y be a linear map between F-spaces X and Y . Then A is
continuous if and only if the graph of f , Γ(f) is closed.

Proof. We observe that if dX and dY are invariant metrices on X and Y respectively, then so is

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

Also, we note that compactness is preserved, so X × Y is an F-space. By linearity, Γ(f) is a
subspace of X × Y . Assume that A is continuous, then Γ(f) is closed, thus it is complete.
Hence, Γ(f) is an F-space.

Assume that Γ(f) is closed, that is F-space. Let Π1 : Γ(f)→ X be a projection map on X
and Π2 : X × Y → Y be a projection map on Y . We see that Π1 is a bijective continuous map.
Thus, the composition Π2 ◦ Π−11 = A is continuous.
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G ⊆ X × Y

X Y

π1
π2

A

π−1
1

3.5.17 Remark. To show that the graph of f is closed, we can verify that if xn → x, then
f(xn)→ f(x).

4 Convexity

Next, we study spaces through their duals.

4.1 Hahn Banach Theorem

For a topological vector space X, a real (or complex) functional on X is a function f : X → R
(or C), that is f maps an element in X to a real number (or a complex number). Assume that
we have a linear functional f defined on a subspace of the whole space. Under some constrains
of f , we might be able to extend f to a functional on X. The Hanh Banach Theorem shows that
a function on a subspace can be extended to a functional on the whole space if it is dominated
by a nice functional on the whole space.

4.1.1 Theorem (Hahn Banach Theorem on R). Let V be a real vector space and p : V → R
satisfying

• p(x+ y) ≤ p(x) + p(y).

• p(αx) = αp(x).

Let Y ⊆ V be a linear subspace and F a linear functional f : X → R such that f ≤ p|Y . Then,
there is a linear functional F : V → R such that FY = f and also F ≤ p.
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