Functional Analysis, Math 7320 Lecture Notes from November 3, 2016

taken by Duong Nguyen

3 Completeness

3.1 Open Mapping Theorem

3.1.14 Theorem. Open Mapping Theorem

Let X be an F-space, Y be a topological vector space. Let $A : X \to Y$ be a continuous, linear map, and A(X) is of 2nd-category of Y. Then, A(X) = Y, A is open, and Y is an F-space.

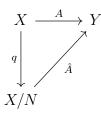
Proof. (cont'd)

Last time we showed that A is an open map, and A(X) = Y. We still need to show Y is an F-space. Notice that if A is one-to-one, then A is a homeomorphism. This is because A(X) = Y implies A is a bijective, and A being a continuous, open map implies that its inverse A^{-1} is continuous.

However, in general, A is not always one-to-one. To get around this, we will construct a 1-1 function between Y and an F-space we already know.

First, define a quotient map $q: X \to X/N$, where $N = A^{-1}(\{0\})$. Note that q is linear, and onto, and the kernel N is a closed subsace of X.

Define $\tilde{A}: X/N \to Y$, $\tilde{A}(x+N) = Ax$. Then \tilde{A} is a bijection, and $A = \tilde{A} \circ q$



To show that \tilde{A} is open, take a set E open (w.r.t final topology) in X/N. By continuity of quotient map q, $q^{-1}(E)$ is open.

 $\implies A(q^{-1}(E))$ is open because A is open (as shown earlier)

 \implies \tilde{A} is open, continuous and 1-1

 $\implies \tilde{A}$ is homeomorphism

What's left to show is X/N is an F-space.

For translation-invariance of X/N, let d be the translation-invariant metric on X, and define a mtric ρ on X/N by:

$$\rho(q(x), q(y)) = \inf\{d(x - y, z) : z \in N\}$$

Then ρ is the invariant metric on the quotient space X/N.

For completeness of X/N, let $\{u_n\}_n$ be a Cauchy sequence in X/N (with respect to the metric ρ), then there exists a subsequence $\{u_{n_i}\}_i$ such that $\rho(u_{n_i}, u_{n_{i+1}}) < 2^{-i}$. Since q is an onto map, we can select x_i such that $q(x_i) = u_{n_i}$, and $d(x_i, x_{i+1}) < 2^{-i}$. Then, x_i is a Cauchy sequence, hence, by the completeness of metric d, x_i converges to some element $x \in X$. Since q is continuous, $u_{n_i} = q(x_i)$ converges to $q(x) \in X/N$. The Cauchy sequence u_n has a convergent subsequence u_{n_i} , so u_n also coverges. Hence, X/N is complete in the metric ρ .

3.1.15 Corollary. Each bijective, continuous, linear map between F-spaces is a homeomorphim

Proof. Let X, Y be F-spaces, and $f: X \to Y$ be a bijective, continuous, linear map. Since f is CTS and linear, by Open Mapping Theorem, f is an open map. Hence, f^{-1} is continuous. We conclude that f is a homeomorphism.

3.1.16 Remark. In the corollary above, the inverse f^{-1} is also bounded.

3.1.17 Corollary. Let X, Y be Banach spaces, and $A : X \to Y$ be a continuous, linear bijection. Then, there exists constants M, m > 0 such that for all $x \in X$:

$$m \|x\|_X \le \|Ax\|_Y \le M \|x\|_X$$

Proof. First, A is continuous and linear, so the map A is bounded. Therefore, by definition of boundedness of an operator norm, there exists a constant M > 0 such that for all $x \in X$:

$$||Ax||_Y \le M ||x||_X$$

Similarly, A is bijective, continuous, and linear, so by the preceding corollary, A^{-1} is continuous; hence, bounded. Therefore, there exists a constant $\tilde{m} > 0$ such that for any $y \in Y$

$$||A^{-1}y||_X \le \tilde{m}||y||_Y$$

Since A is a bijective, for each $y \in Y$, there is a corresponding $x \in X$ such that Ax = y. Hence,

$$\|x\|_X \le \tilde{m} \|Ax\|_Y$$

Equivalently, $\frac{1}{\tilde{m}} \|x\|_X \leq \|Ax\|_Y$. Choose $m = 1/\tilde{m}$, we have the desired result.

3.1.18 Remarks. 1. The choice of m, and M is independent of $x \in X$.

2. The norm on Y is equivalent to the norm on X.

3.2 Internal vs Interior

3.2.19 Definition. Let V be a vector space, and $S \subset V$. A point $x \in S$ is called an internal point if for each $y \in V$, there is $\epsilon > 0$ s.t. $x + (-\epsilon, \epsilon)y \subset S$.

3.2.20 Remark. A set $S \subset V$ for which 0 is an internal point is absorbing because for all $y \in V$, there is $n \in \mathbb{N}$ s.t. $\frac{y}{n} \in S$, i.e. $V = \bigcup_{n=1}^{\infty} (nS)$.

In general, an internal point is not an interior point. For example, let $S = \{(x, y) \subset \mathbb{R}^2 : y \ge x^2\} \cup \{(x, y) \subset \mathbb{R}^2 : y \le -x^2\} \cup \{(x, 0) \subset \mathbb{R}^2 : x \in R\}$. Then the origin is an internal point, but not an interior point of S

3.3 Closed Graph Theorem

3.3.21 Definition. Given sets X, Y, and a function $f : X \to Y$, then $\Gamma(f) = \{(x, f(x))\}_{x \in X} \subset X \times Y$ is called the graph of f

3.3.22 Theorem. Closed Graph Theorem If X is a topological space, Y is a Hausdorff space, and $f : X \to Y$ is continuous, then $\Gamma(f)$ is closed in the product topology.

Proof. Let $\Omega = X \times Y \setminus \Gamma(f)$, and take $(x_0, y_0) \in \Omega$. Then $y_0 \neq f(x_0)$

Since Y is Hausdorff, there exist open sets V containing y_0 , and W containing $f(x_0)$ such that $V \cap W = \emptyset$

 $\implies V \times W$ is open in $Y \times Y$ (w.r.t product topology)

Since f is continuous, $f^{-1}(W)$ is open in X, hence $f^{-1}(W) \times V$ is open in $X \times Y$. Moreover, for any $(x, y) \in f^{-1}(W) \times V$, we have $f(x) \in W$, and $y \in V$, but V and W are disjoint, so $f(x) \neq y$. This implies $f^{-1}(V) \times W \cap \Gamma(f) = \emptyset$. Hence, $f^{-1}(W) \times W \subset \Omega$ is an open set, and contains (x_0, y_0) . We conclude that Ω is open, i.e. $\Gamma(f)$ is closed.

Under some circumstances, the converse is also true

3.3.23 Theorem. Let $A: X \to Y$ be a linear map between F-spaces. Then,

A is continuous $\iff \Gamma(A)$ is closed in $X \times Y$

Proof. First, observe that the metrices d_X and d_Y are invariant on X, Y resp, and so is d, where d is the metric on $X \times Y$, defined by:

$$d_{X \times Y}((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$$

Both X and Y are complete, so $X \times Y$ is complete. Hence, $X \times Y$ is an F-space. Next, we'll show $\Gamma(A)$ is a subspace of $X \times Y$. For any $(x_1, A(x_1))$ and $(x_2, A(x_2)) \in \Gamma(A)$, $c_1, c_2 \in \mathbb{R}$, by linearity of A, we have :

$$c_1(x_1, A(x_1)) + c_2(x_2, A(x_2)) = (c_1x_1 + c_2x_2, c_1A(x_1) + c_2A(x_2))$$
(1)

$$= (c_1 x_1 + c_2 x_2, A(c_1 x_1 + c_2 x_2))$$
(2)

Therefore, $\Gamma(A)$ is a subspace of $X \times Y$. For the forward direction, assume A is continuous. Then, $\Gamma(A)$ is closed in $X \times Y$ (by Closed graph theorem). $X \times Y$ is complete, so $\Gamma(A)$ is complete. Hence, $\Gamma(A)$ is an F-space. Conversely, assume $\Gamma(A)$ is closed. Then, $\Gamma(A)$ is an F-space (by the same argument above). Define the projection maps:

$$\pi_1: \Gamma(A) \to X$$
$$(x, Ax) \mapsto x$$
$$\pi_2: X \times Y \to Y$$

and

$$(x,y)\mapsto y$$

Projection maps π_1 is continuous (with $X \times Y$ endowed with product topology), 1-1, and onto. By open mapping theorem, π_1 has a bounded inverse π_1^{-1} . Hence, π_1^{-1} is continuous. Therefore, the composition $\pi_2 \circ \pi_1^{-1} = A$ is continuous

4 CONVEXITY

In this section, we'll study spaces through their duals

4.0.1 Theorem. Hahn-Banach) Let V be a real vector space, and p be a function on V satisfying:

- 1. (sublinearity) $p(x+y) \neq p(x) + p(y)$, for all $x, y \in V$
- 2. (homogeneity) $p(\alpha x) = \alpha p(x)$, for $\alpha > 0$

Let $Y \subset V$ be a linear subspace, f be a linear functional $f : Y \to R$ s.t $f \leq p|_Y$ Then, there is a linear functional F on V with $F|_Y = f$, and $F \leq p$

- 4.0.2 Remarks. 1. In the above theorem, p doesn't have to be a seminorm. For example, we can take $p(x) = max(0, x), x \in \mathbb{R}$, then p satisfies sublinearity and homogeneity while p is not a seminorm.
 - 2. No Banach space is needed