Functional Analysis, Math 7320 Lecture Notes from November 08, 2016

taken by Adrian Radillo

Warm-up: Internal vs. convexity
We revisit the sequence space from last time. Let,

$$
C_{0+}:=\left\{x \in C_{00} \text { with last (if existing) non-zero entry strictly positive }\right\} .
$$

1.3.20 Question. Does C_{0+} have an internal point?
1.3.21 Answer. No. We show that no point $x \in C_{0+}$ is internal. Assume that $x_{n}>0$ is the last non-zero entry of an arbitrary point $x \in C_{0+}$. Then, pick $y \in C_{0+}$ with last non-zero entry $y_{n+1}>0$. We observe that for any $\epsilon>0$, the point $x-\epsilon y$ is not in C_{0+}. So x is not internal.
1.3.22 Question. Is C_{0+} convex?
1.3.23 Answer. Yes. Let $x, y \in C_{0+}$ be chosen arbitrarily. Let $z=\epsilon x+(1-\epsilon) y \in C_{0+}$ be any point on the line segment joining x and y, with $\epsilon \in(0,1)$. Call $m, n \in \mathbb{N}$ the indices of the last non-zero entries of x and y respectively, and $N:=\max (m, n)$. Then, $z_{N}=\epsilon x_{N}+(1-\epsilon) y_{N}>0$ is the last non-zero entry of z, which make it a point of C_{0+}.
1.3.24 Remark. A line segment in \mathbb{R}^{2} is another example of a convex set that has no internal point.
1.3.25 Theorem (Hahn-Banach over \mathbb{R}). Let V be a real vector space and p a functional on V satisfying the following:

1. $p(x+y) \leq p(x)+p(y)$ for all $x, y \in V, \quad$ (subadditivity)
2. $p(\alpha x)=\alpha p(x)$ for all $x \in V$ and $\alpha \geq 0$. (positive homogeneity)

Let $Y \subseteq V$ be a linear subspace and $f: Y \rightarrow \mathbb{R}$, a linear functional dominated by p, i.e. such that $f \leq p_{\left.\right|_{Y}}$. Then, there is a linear functional \mathcal{F} on V which extends $f, \mathcal{F}_{\left.\right|_{Y}}=f$, and preserves the inequality: $\mathcal{F} \leq p$.

Proof. We start by an application of Zorn's lemma. Consider the collection of linear extensions of f dominated by $p, \Gamma:=\left\{\left(g, V_{g}\right)\right\}$, with each V_{g} being a linear subspace of V containing Y, and each $g: V_{g} \rightarrow \mathbb{R}$ a linear functional satisfying $\left.\right|_{Y}=f$ and $g \leq p_{V_{g}}$. We define a partial order on Γ as follows: $\left(g_{1}, V_{g_{1}}\right) \preceq\left(g_{2}, V_{g_{2}}\right)$ if and only if,

- $V_{g_{1}} \subseteq V_{g_{2}}, \mathrm{AND}$
- $\left.g_{2}\right|_{V_{g_{1}}}=g_{1}$.

Recall that linearly ordered subsets of Γ are called chains. Let $\left\{\left(g, V_{g}\right)\right\}_{g \in G}$ be a chain and set $D:=\bigcup_{g \in G} V_{g}$. Then, the function F defined on D by $F(x):=g(x)$ if $x \in V_{g}$ for some $g \in G$, is well-defined, linear, and satisfies $F \leq\left. p\right|_{D}$. Thus, $F \in \Gamma$ is an upper bound for the chain. By Zorn's lemma, there exists a maximal element $\left(\mathcal{F}, V_{\mathcal{F}}\right)$ of Γ.

We now set to show that $V_{\mathcal{F}}=V$, which will complete the proof. Assume for contradiction that $V_{\mathcal{F}} \subsetneq V$. Then we may choose $x_{0} \in V \backslash V_{\mathcal{F}}$ and set $V_{1}:=\operatorname{span}\left\{V_{\mathcal{F}}, x_{0}\right\}$. Each vector $x \in V_{1}$ can then be uniquely decomposed as $x=y+\alpha x_{0}$ with $(y, \alpha) \in V_{\mathcal{F}} \times \mathbb{R}$. Next, define a linear functional $f_{1}: V_{1} \rightarrow \mathbb{R}$ as follows: $f_{1}(y):=\mathcal{F}(y)$ if $y \in V_{\mathcal{F}}$ and $f_{1}\left(x_{0}\right):=\beta$, for an arbitrary $\beta \in \mathbb{R}$. By construction we have that for all $x=y+\alpha x_{0} \in V_{1}, f_{1}(x)=\mathcal{F}(y)+\alpha \beta$. We will now choose β (which was arbitrary up until now) in such a way that the inequality,

$$
\begin{equation*}
f_{1} \leq p_{V_{1}} \tag{1}
\end{equation*}
$$

becomes true. Note that if we succeed, then the mere existence of $\left(f_{1}, V_{1}\right)$ will violate the maximality of $\left(\mathcal{F}, V_{\mathcal{F}}\right)$, which will generate our contradiction. Inequality (1) is equivalent to, $f_{1}(y)+\alpha \beta \leq p\left(y+\alpha x_{0}\right)$, holding true for any $(y, \alpha) \in V_{\mathcal{F}} \times \mathbb{R}$. In particular, for $y, y^{\prime} \in V_{\mathcal{F}}$ and $\alpha= \pm 1$, the following equations must hold:

$$
\begin{array}{r}
f_{1}(y)+\beta \leq p\left(y+x_{0}\right) \\
f_{1}\left(y^{\prime}\right)-\beta \leq p\left(y^{\prime}-x_{0}\right) . \tag{3}
\end{array}
$$

We combine them to get the equivalent systems:

$$
\Longleftrightarrow \begin{align*}
-\beta+f_{1}\left(y^{\prime}\right)-p\left(y^{\prime}-x_{0}\right) & \leq 0 \leq p\left(y+x_{0}\right)-f_{1}(y)-\beta \\
f_{1}\left(y^{\prime}\right)-p\left(y^{\prime}-x_{0}\right) & \leq \beta \leq p\left(y+x_{0}\right)-f_{1}(y) . \tag{4}
\end{align*}
$$

Now, we explain why the inequality, $f_{1}\left(y^{\prime}\right)-p\left(y^{\prime}-x_{0}\right) \leq p\left(y+x_{0}\right)-f_{1}(y)$, is true for all $y, y^{\prime} \in V_{\mathcal{F}}$, and we derive a direct consequence of it.

$$
\begin{array}{rlrl}
f_{1}\left(y^{\prime}\right)+f_{1}(y) & =f_{1}\left(y+y^{\prime}\right) & \\
& =f_{1}\left(y+x_{0}+y^{\prime}-x_{0}\right) & & \\
& =\mathcal{F}\left(y+x_{0}+y^{\prime}-x_{0}\right) & & \text { (by construction } \left.y+y^{\prime} \in V_{\mathcal{F}}\right) \\
& \leq p\left(y+x_{0}+y^{\prime}-x_{0}\right) & & \\
& \leq p\left(y+x_{0}\right)+p\left(y^{\prime}-x_{0}\right) & & \text { (by subadditivity of } p \text { on } V \text {) } \\
\Longrightarrow \quad f_{1}\left(y^{\prime}\right)-p\left(y^{\prime}-x_{0}\right) & \leq p\left(y+x_{0}\right)-f_{1}(y) & & \\
\Longrightarrow \sup _{y^{\prime} \in V_{\mathcal{F}}}\left(f_{1}\left(y^{\prime}\right)-p\left(y^{\prime}-x_{0}\right)\right) & \leq \inf _{y \in V_{\mathcal{F}}}\left(p\left(y+x_{0}\right)-f_{1}(y)\right) . &
\end{array}
$$

We see that, as long as both sides of the last inequality are not both equal to $+\infty$ or $-\infty$, there exists a $\beta \in \mathbb{R}$ satisfying our inequality (4). But this potential obstacle cannot happen since,

$$
-\infty<\sup _{y^{\prime} \in V_{\mathcal{F}}}\left(f_{1}\left(y^{\prime}\right)-p\left(y^{\prime}-x_{0}\right)\right) \leq \inf _{y \in V_{\mathcal{F}}}\left(p\left(y+x_{0}\right)-f_{1}(y)\right)<\infty
$$

as none of the sets of which we are taking the sup or inf are empty. With β such chosen, we are now able to prove that (1) is true for any $\alpha \in \mathbb{R}$. We proceed by cases.

If $\alpha>0$,

$$
f_{1}\left(y+\alpha x_{0}\right)=\alpha f_{1}\left(\frac{y}{\alpha}+x_{0}\right) \leq \alpha p\left(\frac{y}{\alpha}+x_{0}\right)=p\left(y+\alpha x_{0}\right) . \quad(\text { where we used }(2))
$$

If $\alpha=0, \quad f_{1}(y)=\mathcal{F}(y) \leq p(y)$.
If $\alpha<0$,

$$
f_{1}\left(y+\alpha x_{0}\right)=|\alpha| f_{1}\left(\frac{y}{|\alpha|}-x_{0}\right) \leq|\alpha| p\left(\frac{y}{|\alpha|}-x_{0}\right)=p\left(y+\alpha x_{0}\right) . \quad \text { (where we used (3)) }
$$

When V is a \mathbb{C}-vector space, the real part of a linear functional $f: V \rightarrow \mathbb{C}$ determines its imaginary part, by linearity: $f(x)=\boldsymbol{\operatorname { R e }} f(x)-i \boldsymbol{\operatorname { R e }} f(i x)$, for all $x \in V$. We can therefore apply a similar strategy as above, to prove the following theorem.
1.3.26 Theorem (Hahn-Banach over \mathbb{C}). Let X be a complex vector space and p a seminorm on X. Let further, $Y \subseteq X$ be a linear subspace and $f: Y \rightarrow \mathbb{C}$, a linear functional satisfying $|f| \leq\left. p\right|_{Y}$. Then, there is a linear functional $F: X \rightarrow \mathbb{C}$ which extends $f, F_{\left.\right|_{Y}}=f$, and preserves the inequality: $|F| \leq p$.
Proof. First, we see X as a real vector space, on which the linear functional $\operatorname{Re} f(x): Y \rightarrow \mathbb{R}$ may be extended to $g: X \rightarrow \mathbb{R}$ by virtue of theorem 1.3.25, with $g \leq p$. Next, we define $F(x):=g(x)-i g(i x)$ on X, which by construction, is complex-linear, and agrees with f on Y. It only remains to show that $|F| \leq p$. Let $x \in X$ be arbitrary. Since $F(x)$ lies in the complex plane, there is a complex number α with norm 1 such that $\alpha F(x)=|F(x)|$. Geometrically, we can think of this α as a rotation map centered at the origin and taking the point $F(x)$ to the positive-half of the real line. Since F is linear, we also have $\alpha F(x)=F(\alpha x)$, and since $F(\alpha x) \in \mathbb{R}$ by construction, we must have $F(\alpha x)=\operatorname{Re} F(\alpha x)=g(\alpha x)$. Since g is dominated by p and p is a seminorm, we get $|F(x)|=g(\alpha x) \leq p(\alpha x)=p(x)$, which completes the proof.
1.3.27 Remark. The preceding theorem applies to normed spaces and shows the existence of an abundance of linear functionals.
1.3.28 Corollary. If X is a normed space and $x_{0} \in X$, then there exists a linear functional f such that $f\left(x_{0}\right)=\left\|x_{0}\right\|$ and $|f(x)| \leq\|x\|$ for all $x \in X$.
Proof. If $x_{0}=0$, let $f \equiv 0$. Otherwise, set $p(x):=\|x\|$ for all $x \in X, Y:=\operatorname{span}\left\{x_{0}\right\}$, define the linear functional $f\left(\alpha x_{0}\right):=\alpha\left\|x_{0}\right\|$, and extend it to X using the preceding theorems ${ }^{1}$.

Next, we discuss separation.
1.3.29 Definition. Let V be a vector space and $M, N \subseteq V$ two subsets. A linear functional f on V is said to separate M and N if,

$$
\sup \operatorname{Re}[f(N)] \leq \inf \operatorname{Re}[f(M)]
$$

where $f(N)$ and $f(M)$ denote the respective images of N and M under f.

[^0]
[^0]: ${ }^{1}$ Note that an easy consequence of theorem 1.3.25 is that $-p(-x) \leq-\mathcal{F}(-x)=\mathcal{F}(x)$, for all $x \in V$, which entails $|\mathcal{F}| \leq p$ when p is a seminorm or a norm.

