Functional Analysis, Math 7320 Lecture Notes from November 08, 2016

taken by Adrian Radillo

Warm-up: Internal vs. convexity

We revisit the sequence space from last time. Let,

 $C_{0+} := \{x \in C_{00} \text{ with last (if existing) non-zero entry strictly positive}\}.$

1.3.20 Question. Does C_{0+} have an internal point?

1.3.21 Answer. No. We show that no point $x \in C_{0+}$ is internal. Assume that $x_n > 0$ is the last non-zero entry of an arbitrary point $x \in C_{0+}$. Then, pick $y \in C_{0+}$ with last non-zero entry $y_{n+1} > 0$. We observe that for any $\epsilon > 0$, the point $x - \epsilon y$ is not in C_{0+} . So x is not internal.

1.3.22 Question. Is C_{0+} convex?

1.3.23 Answer. Yes. Let $x, y \in C_{0+}$ be chosen arbitrarily. Let $z = \epsilon x + (1 - \epsilon)y \in C_{0+}$ be any point on the line segment joining x and y, with $\epsilon \in (0, 1)$. Call $m, n \in \mathbb{N}$ the indices of the last non-zero entries of x and y respectively, and $N := \max(m, n)$. Then, $z_N = \epsilon x_N + (1 - \epsilon)y_N > 0$ is the last non-zero entry of z, which make it a point of C_{0+} .

1.3.24 Remark. A line segment in \mathbb{R}^2 is another example of a convex set that has no internal point.

1.3.25 Theorem (Hahn-Banach over \mathbb{R}). Let V be a real vector space and p a functional on V satisfying the following:

1. $p(x+y) \le p(x) + p(y)$ for all $x, y \in V$, (subadditivity)

2.
$$p(\alpha x) = \alpha p(x)$$
 for all $x \in V$ and $\alpha \ge 0$. (positive homogeneity)

Let $Y \subseteq V$ be a linear subspace and $f: Y \to \mathbb{R}$, a linear functional dominated by p, i.e. such that $f \leq p_{|Y}$. Then, there is a linear functional \mathcal{F} on V which extends f, $\mathcal{F}_{|Y} = f$, and preserves the inequality: $\mathcal{F} \leq p$.

Proof. We start by an application of Zorn's lemma. Consider the collection of linear extensions of f dominated by p, $\Gamma := \{(g, V_g)\}$, with each V_g being a linear subspace of V containing Y, and each $g : V_g \to \mathbb{R}$ a linear functional satisfying $g|_Y = f$ and $g \leq p|_{V_g}$. We define a partial order on Γ as follows: $(g_1, V_{g_1}) \preceq (g_2, V_{g_2})$ if and only if,

• $V_{g_1} \subseteq V_{g_2}$, AND

• $g_{2|_{V_{g_1}}} = g_1.$

Recall that linearly ordered subsets of Γ are called *chains*. Let $\{(g, V_g)\}_{g \in G}$ be a chain and set $D := \bigcup_{g \in G} V_g$. Then, the function F defined on D by F(x) := g(x) if $x \in V_g$ for some $g \in G$, is well-defined, linear, and satisfies $F \leq p_{\mid D}$. Thus, $F \in \Gamma$ is an upper bound for the chain. By Zorn's lemma, there exists a maximal element $(\mathcal{F}, V_{\mathcal{F}})$ of Γ .

We now set to show that $V_{\mathcal{F}} = V$, which will complete the proof. Assume for *contradiction* that $V_{\mathcal{F}} \subsetneq V$. Then we may choose $x_0 \in V \setminus V_{\mathcal{F}}$ and set $V_1 := \operatorname{span}\{V_{\mathcal{F}}, x_0\}$. Each vector $x \in V_1$ can then be uniquely decomposed as $x = y + \alpha x_0$ with $(y, \alpha) \in V_{\mathcal{F}} \times \mathbb{R}$. Next, define a linear functional $f_1 : V_1 \to \mathbb{R}$ as follows: $f_1(y) := \mathcal{F}(y)$ if $y \in V_{\mathcal{F}}$ and $f_1(x_0) := \beta$, for an arbitrary $\beta \in \mathbb{R}$. By construction we have that for all $x = y + \alpha x_0 \in V_1$, $f_1(x) = \mathcal{F}(y) + \alpha \beta$. We will now choose β (which was arbitrary up until now) in such a way that the inequality,

$$f_1 \le p_{\mid V_1},\tag{1}$$

becomes true. Note that if we succeed, then the mere existence of (f_1, V_1) will violate the maximality of $(\mathcal{F}, V_{\mathcal{F}})$, which will generate our contradiction. Inequality (1) is equivalent to, $f_1(y) + \alpha\beta \leq p(y + \alpha x_0)$, holding true for any $(y, \alpha) \in V_{\mathcal{F}} \times \mathbb{R}$. In particular, for $y, y' \in V_{\mathcal{F}}$ and $\alpha = \pm 1$, the following equations must hold:

$$f_1(y) + \beta \le p(y + x_0), \tag{2}$$

$$f_1(y') - \beta \le p(y' - x_0).$$
 (3)

We combine them to get the equivalent systems:

$$\begin{array}{rcl} -\beta + f_1(y') - p(y' - x_0) &\leq 0 &\leq p(y + x_0) - f_1(y) - \beta \\ \Leftrightarrow & f_1(y') - p(y' - x_0) &\leq \beta &\leq p(y + x_0) - f_1(y). \end{array}$$

$$\tag{4}$$

Now, we explain why the inequality, $f_1(y') - p(y' - x_0) \le p(y + x_0) - f_1(y)$, is true for all $y, y' \in V_F$, and we derive a direct consequence of it.

$$\begin{aligned} f_1(y') + f_1(y) &= f_1(y + y') \\ &= f_1(y + x_0 + y' - x_0) \\ &= \mathcal{F}(y + x_0 + y' - x_0) \\ &\leq p(y + x_0 + y' - x_0) \\ &\leq p(y + x_0) + p(y' - x_0) \end{aligned}$$
(by construction $y + y' \in V_{\mathcal{F}}$)

$$&= p(y + x_0) + p(y' - x_0) \\ &\Rightarrow f_1(y') - p(y' - x_0) \leq p(y + x_0) - f_1(y) \\ &\implies \sup_{y' \in V_{\mathcal{F}}} (f_1(y') - p(y' - x_0)) \leq \inf_{y \in V_{\mathcal{F}}} (p(y + x_0) - f_1(y)) . \end{aligned}$$

We see that, as long as both sides of the last inequality are not both equal to $+\infty$ or $-\infty$, there exists a $\beta \in \mathbb{R}$ satisfying our inequality (4). But this potential obstacle cannot happen since,

$$-\infty < \sup_{y' \in V_{\mathcal{F}}} \left(f_1(y') - p(y' - x_0) \right) \le \inf_{y \in V_{\mathcal{F}}} \left(p(y + x_0) - f_1(y) \right) < \infty,$$

as none of the sets of which we are taking the sup or \inf are empty. With β such chosen, we are now able to prove that (1) is true for any $\alpha \in \mathbb{R}$. We proceed by cases.

If $\alpha > 0$,

$$f_1(y + \alpha x_0) = \alpha f_1\left(\frac{y}{\alpha} + x_0\right) \le \alpha p\left(\frac{y}{\alpha} + x_0\right) = p(y + \alpha x_0). \quad \text{(where we used (2))}$$

If $\alpha = 0$, $f_1(y) = \mathcal{F}(y) \le p(y)$.

If $\alpha < 0$,

$$f_1(y + \alpha x_0) = |\alpha| f_1\left(\frac{y}{|\alpha|} - x_0\right) \le |\alpha| p\left(\frac{y}{|\alpha|} - x_0\right) = p(y + \alpha x_0). \quad \text{(where we used (3))}$$

When V is a \mathbb{C} -vector space, the real part of a linear functional $f: V \to \mathbb{C}$ determines its imaginary part, by linearity: $f(x) = \operatorname{Re} f(x) - i \operatorname{Re} f(ix)$, for all $x \in V$. We can therefore apply a similar strategy as above, to prove the following theorem.

1.3.26 Theorem (Hahn-Banach over \mathbb{C}). Let X be a complex vector space and p a seminorm on X. Let further, $Y \subseteq X$ be a linear subspace and $f : Y \to \mathbb{C}$, a linear functional satisfying $|f| \leq p_{|Y}$. Then, there is a linear functional $F : X \to \mathbb{C}$ which extends f, $F_{|Y} = f$, and preserves the inequality: $|F| \leq p$.

Proof. First, we see X as a real vector space, on which the linear functional $\operatorname{Re} f(x) : Y \to \mathbb{R}$ may be extended to $g : X \to \mathbb{R}$ by virtue of theorem 1.3.25, with $g \leq p$. Next, we define F(x) := g(x) - ig(ix) on X, which by construction, is complex-linear, and agrees with f on Y. It only remains to show that $|F| \leq p$. Let $x \in X$ be arbitrary. Since F(x) lies in the complex plane, there is a complex number α with norm 1 such that $\alpha F(x) = |F(x)|$. Geometrically, we can think of this α as a rotation map centered at the origin and taking the point F(x) to the positive-half of the real line. Since F is linear, we also have $\alpha F(x) = F(\alpha x)$, and since $F(\alpha x) \in \mathbb{R}$ by construction, we must have $F(\alpha x) = \operatorname{Re} F(\alpha x) = g(\alpha x)$. Since g is dominated by p and p is a seminorm, we get $|F(x)| = g(\alpha x) \leq p(\alpha x) = p(x)$, which completes the proof.

1.3.27 Remark. The preceding theorem applies to normed spaces and shows the existence of an abundance of linear functionals.

1.3.28 Corollary. If X is a normed space and $x_0 \in X$, then there exists a linear functional f such that $f(x_0) = ||x_0||$ and $|f(x)| \le ||x||$ for all $x \in X$.

Proof. If $x_0 = 0$, let $f \equiv 0$. Otherwise, set p(x) := ||x|| for all $x \in X$, $Y := \text{span}\{x_0\}$, define the linear functional $f(\alpha x_0) := \alpha ||x_0||$, and extend it to X using the preceding theorems¹. \Box

Next, we discuss separation.

1.3.29 Definition. Let V be a vector space and $M, N \subseteq V$ two subsets. A linear functional f on V is said to separate M and N if,

$$\sup \operatorname{\mathsf{Re}}\left[f(N)\right] \le \inf \operatorname{\mathsf{Re}}\left[f(M)\right]$$

where f(N) and f(M) denote the respective images of N and M under f.

¹Note that an easy consequence of theorem 1.3.25 is that $-p(-x) \leq -\mathcal{F}(-x) = \mathcal{F}(x)$, for all $x \in V$, which entails $|\mathcal{F}| \leq p$ when p is a seminorm or a norm.